

Pact Language Reference

Contents:

	Pact Smart Contract Language Reference

	Rest API
	Pact built-in server

	pact-lang-api JS Library

	API request formatter

	Request YAML file format
	YAML exec command request

	YAML Continuation command request

	Signing Transactions
	Offline Signing with a Cold Wallet

	Detached Signature Transaction Format

	Concepts
	Execution Modes
	Contract Definition

	Transaction Execution

	Queries and Local Execution

	Database Interaction
	Atomic execution

	Key-Row Model

	Queries and Performance

	No Nulls

	Versioned History

	Back-ends

	Types and Schemas
	Runtime Type enforcement

	Static Type Inference on Modules

	Formal Verification

	Keysets and Authorization
	Keyset definition

	Keyset Predicates

	Key rotation

	Module Table Guards

	Row-level keysets

	Namespaces
	Example: Defining a namespace

	Example: Accessing members of a namespace

	Example: Importing module code or implementing interfaces at a namespace

	Example: appending code to a namespace

	Guards, Capabilities and Events
	Guards

	Capabilities

	Signature capabilities

	Signatures and Managed Capabilities

	Guards vs Capabilities

	Modeling capabilities with compose-capability

	Improving efficiency

	defcap details

	Testing scoping signatures with capabilities

	Guard types

	Events

	Generalized Module Governance
	Keysets vs governance functions

	Governance capability and module admin

	Example: stakeholder upgrade vote

	Interfaces
	Example: Declaring and implementing an interface

	Declaring models in an interface

	Module References

	Computational Model
	Turing-Incomplete

	Single-assignment Variables

	Data Types

	Performance

	Control Flow

	Functional Concepts

	Pure execution

	LISP

	Message Data

	Confidentiality
	Entities

	Disjoint Databases

	Confidential Pacts

	Asynchronous Transaction Automation with “Pacts”
	Public Pacts

	Private Pacts

	Failures, Rollbacks and Cancels

	Yield and Resume

	Pact execution scope and pact-id

	Testing pacts

	Dependency Management
	Module Hashes

	Pinning module versions with use

	Inlined Dependencies: “No Leftpad”

	Blessing hashes

	Phased upgrades with “v2” modules

	Syntax
	Literals
	Strings

	Symbols

	Integers

	Decimals

	Booleans

	Lists

	Objects

	Bindings

	Lambdas

	Type specifiers
	Type literals

	Schema type literals

	Module type literals

	Dereference operator
	What can be typed

	Special forms
	Docs and Metadata

	bless

	defun

	defcap

	defconst

	defpact

	defschema

	deftable

	let

	let*

	cond;

	step

	step-with-rollback

	use

	interface

	module

	implements

	Expressions
	Atoms

	S-expressions

	References

	Time formats
	Default format and JSON serialization

	Examples
	ISO8601

	RFC822

	YYYY-MM-DD hh:mm:ss.000000

	Built-in Functions
	General
	CHARSET_ASCII

	CHARSET_LATIN1

	at

	base64-decode

	base64-encode

	bind

	chain-data

	compose

	concat

	constantly

	contains

	continue

	define-namespace

	distinct

	drop

	enforce

	enforce-one

	enforce-pact-version

	enumerate

	filter

	fold

	format

	hash

	identity

	if

	int-to-str

	is-charset

	length

	list

	list-modules

	make-list

	map

	namespace

	pact-id

	pact-version

	public-chain-data

	read-decimal

	read-integer

	read-msg

	read-string

	remove

	resume

	reverse

	sort

	str-to-int

	str-to-list

	take

	try

	tx-hash

	typeof

	where

	yield

	zip

	Database
	create-table

	describe-keyset

	describe-module

	describe-table

	fold-db

	insert

	keylog

	keys

	read

	select

	txids

	txlog

	update

	with-default-read

	with-read

	write

	Time
	add-time

	days

	diff-time

	format-time

	hours

	minutes

	parse-time

	time

	Operators
	!=

	& {#&}

	*

	+

	-

	/

	<

	<=

	=

	>

	>=

	^

	abs

	and

	and? {#and?}

	ceiling

	exp

	floor

	ln

	log

	mod

	not

	not? {#not?}

	or

	or? {#or?}

	round

	shift

	sqrt

	xor

	| {#|}

	~ {#~}

	Keysets
	define-keyset

	enforce-keyset

	keys-2

	keys-all

	keys-any

	read-keyset

	Capabilities
	compose-capability

	create-module-guard

	create-pact-guard

	create-principal

	create-user-guard

	emit-event

	enforce-guard

	install-capability

	keyset-ref-guard

	require-capability

	validate-principal

	with-capability

	SPV
	verify-spv

	Commitments
	decrypt-cc20p1305

	validate-keypair

	REPL-only functions
	begin-tx

	bench

	commit-tx

	continue-pact

	env-chain-data

	env-data

	env-dynref

	env-enable-repl-natives

	env-entity

	env-events

	env-exec-config

	env-gas

	env-gaslimit

	env-gaslog

	env-gasmodel

	env-gasprice

	env-gasrate

	env-hash

	env-keys

	env-namespace-policy

	env-sigs

	expect

	expect-failure

	expect-that

	format-address

	load

	mock-spv

	pact-state

	print

	rollback-tx

	sig-keyset

	test-capability

	typecheck

	verify

	with-applied-env

	The Pact Property Checking System
	What is it?

	What do properties and schema invariants look like?

	How does it work?

	How do you use it?

	Expressing properties
	Arguments, return values, and standard arithmetic and comparison operators

	Boolean operators

	Transaction abort and success

	More comprehensive properties API documentation

	Expressing schema invariants
	Keyset Authorization

	Database access

	Mass conservation and column deltas

	Universal and existential quantification

	Defining and reusing properties

	A simple balance transfer example

	Property and Invariant Functions
	Numerical operators
	+

	-

	*

	/

	^

	log

	-

	sqrt

	ln

	exp

	abs

	round

	ceiling

	floor

	mod

	Bitwise operators
	&

	|

	xor

	shift

	~

	Logical operators
	>

	<

	>=

	<=

	=

	!=

	and

	or

	not

	when

	and?

	or?

	Object operators
	at

	+

	drop

	take

	length

	List operators
	at

	length

	contains

	reverse

	sort

	drop

	take

	make-list

	map

	filter

	fold

	String operators
	length

	+

	str-to-int

	take

	drop

	Temporal operators
	add-time

	Quantification operators
	forall

	exists

	column-of

	Transactional operators
	abort

	success

	governance-passes

	result

	Database operators
	table-written

	table-read

	cell-delta

	column-delta

	column-written

	column-read

	row-read

	row-written

	row-read-count

	row-write-count

	row-exists

	read

	Authorization operators
	authorized-by

	row-enforced

	Function operators
	identity

	constantly

	compose

	Other operators
	where

	typeof

 [image: _images/kadena-logo-210px.png]

Pact Smart Contract Language Reference

This document is a reference for the Pact smart-contract language,
designed for correct, transactional execution on a high-performance
blockchain [http://kadena.io]. For more background, please see the
white paper [http://kadena.io/docs/Kadena-PactWhitepaper.pdf] or the
pact home page [http://kadena.io/#pactModal].

Copyright (c) 2016 - 2018, Stuart Popejoy. All Rights Reserved.

Rest API

See (https://api.chainweb.com/openapi/pact.html) for latest OpenAPI
docs.

Pact built-in server

Pact ships with a built-in HTTP server and SQLite backend. To start up
the server issue pact -s config.yaml, with a suitable config.

pact-lang-api JS Library

The pact-lang-api JS library is available via
npm [https://www.npmjs.com/package/pact-lang-api] for web
development.

API request formatter

The pact tool accepts the -a option to format API request JSON,
using a YAML file describing the request. The output can then be used
with a POST tool like Postman or even piping into curl.

For instance, a yaml file called “apireq.yaml” with the following
contents:

code: "(+ 1 2)"
data:
 name: Stuart
 language: Pact
keyPairs:
 - public: ba54b224d1924dd98403f5c751abdd10de6cd81b0121800bf7bdbdcfaec7388d
 secret: 8693e641ae2bbe9ea802c736f42027b03f86afe63cae315e7169c9c496c17332

can be fed into pact to obtain a valid API request:

$ pact -a tests/apireq.yaml -l
{"hash":"444669038ea7811b90934f3d65574ef35c82d5c79cedd26d0931fddf837cccd2c9cf19392bf62c485f33535983f5e04c3e1a06b6b49e045c5160a637db8d7331","sigs":[{"sig":"9097304baed4c419002c6b9690972e1303ac86d14dc59919bf36c785d008f4ad7efa3352ac2b8a47d0b688fe2909dbf392dd162457c4837bc4dc92f2f61fd20d","scheme":"ED25519","pubKey":"ba54b224d1924dd98403f5c751abdd10de6cd81b0121800bf7bdbdcfaec7388d","addr":"ba54b224d1924dd98403f5c751abdd10de6cd81b0121800bf7bdbdcfaec7388d"}],"cmd":"{\"address\":null,\"payload\":{\"exec\":{\"data\":{\"name\":\"Stuart\",\"language\":\"Pact\"},\"code\":\"(+ 1 2)\"}},\"nonce\":\"\\\"2017-09-27 19:42:06.696533 UTC\\\"\"}"}

Here’s an example of piping into curl, hitting a pact server running on
port 8080:

$ pact -a tests/apireq.yaml -l | curl -d @- http://localhost:8080/api/v1/local
{"status":"success","response":{"status":"success","data":3}}

Request YAML file format

Request yaml files takes two forms. An execution Request yaml file
describes the
exec [https://api.chainweb.com/openapi/pact.html#tag/model-payload]
payload. Meanwhile, a continuation Request yaml file describes the
cont [https://api.chainweb.com/openapi/pact.html#tag/model-payload]
payload.

YAML exec command request

The execution request yaml for a public blockchain takes the following
keys:

code: Transaction code
codeFile: Transaction code file
data: JSON transaction data
dataFile: JSON transaction data file
keyPairs: list of key pairs for signing (use pact -g to generate): [
 public: base 16 public key
 secret: base 16 secret key
 caps: [
 optional managed capabilities
]
]
nonce: optional request nonce, will use current time if not provided
networkId: string identifier for a blockchain network
publicMeta:
 chainId: string chain id of the chain of execution
 sender: string denoting the sender of the transaction
 gasLimit: integer gas limit
 gasPrice: decimal gas price
 ttl: integer time-to-live value
 creationTime: optional integer tx execution time after offset
type: exec

YAML Continuation command request

The continuation request yaml for a public blockchain takes the
following keys:

pactTxHash: integer transaction id of pact
step: integer next step of a pact
rollback: boolean for rollingback a pact
proof: string spv proof of continuation (optional, cross-chain only)
data: JSON transaction data
dataFile: JSON transaction data file
keyPairs: list of key pairs for signing (use pact -g to generate): [
 public: string base 16 public key
 secret: string base 16 secret key
 caps: [
 optional managed capabilities
]
]
networkId: string identifier for a blockchain network
publicMeta:
 chainId: string chain id of the chain of execution
 sender: string denoting the sender of the transaction
 gasLimit: integer gas limit
 gasPrice: decimal gas price
 ttl: integer time-to-live value
 creationTime: optional integer tx execution time after offset
nonce: optional request nonce, will use current time if not provided
type: cont

Note that the optional “proof” field only makes sense when using
cross-chain continuations.

Signing Transactions

As of Pact 3.5.0, the pact command line tool now has several
commands to facilitate signing transactions. Here’s a full script
showing how these commands can be used to prepare an unsigned version of
the transaction and add signatures to it. This transcript assumes that
the details of the transaction has been specified in a file called
tx.yaml.

At some earlier time generate and save some public/private key pairs.
pact -g > alice-key.yaml
pact -g > bob-key.yaml

Convert a transaction into an unsigned prepared form that is signatures can be added to
pact -u tx.yaml > tx-unsigned.yaml

Sign the prepared transaction with one or more keys
cat tx-unsigned.yaml | pact add-sig alice-key.yaml > tx-signed-alice.yaml
cat tx-unsigned.yaml | pact add-sig bob-key.yaml > tx-signed-bob.yaml

Combine the signatures into a fully signed transaction ready to send to the blockchain
pact combine-sigs tx-signed-alice.yaml tx-signed-bob.yaml > tx-final.json

The add-sig command takes the output of pact -u on standard
input and one or more key files as command line arguments. It adds the
appropriate signatures to to the transaction and prints the result to
stdout.

The combine-sigs command takes multiple unsigned (from pact -u)
and signed (from pact add-sig) transaction files as command line
arguments and outputs the command and all the signatures on stdout.

Both add-sig and combine-sigs will output YAML if the output
transaction hasn’t accumulated enough signatures to be valid. If all the
necessary signatures are present, then they will output JSON in final
form that is ready to be sent to the blockchain on the `/send
endpoint <#send>`__. If you would like to do a test run of the
transaction, you can use the -l flag to generate output suitable for
use with the `/local endpoint <#local>`__.

The above example adds signatures in parallel, but the add-sig
command can also be used to add signatures sequentially in separate
steps or all at once in a single step as shown in the following two
examples:

cat tx-unsigned.yaml | pact add-sig alice-key.yaml | pact add-sig bob-key.yaml
cat tx-unsigned.yaml | pact add-sig alice-key.yaml add-sig bob-key.yaml

Offline Signing with a Cold Wallet

Some cold wallet signing procedures use QR codes to get transaction data
on and off the cold wallet machine. Since QR codes can transmit a fairly
limited amount of information these signing commands are also designed
to work with a more compact data format that doesn’t require the full
command to generate signatures. Here’s an example of what
tx-unsigned.yaml might look like in the above example:

hash: KY6RFunty4WazQiCsKsYD-ovu-_XQByfY6scTxi9gQQ
sigs:
 368820f80c324bbc7c2b0610688a7da43e39f91d118732671cd9c7500ff43cca: null
 6be2f485a7af75fedb4b7f153a903f7e6000ca4aa501179c91a2450b777bd2a7: null
cmd: '{"networkId":"mainnet01","payload":{"exec":{"data":{"ks":{"pred":"keys-all","keys":["368820f80c324bbc7c2b0610688a7da43e39f91d118732671cd9c7500ff43cca"]}},"code":"(coin.transfer-create \"alice\" \"bob\" (read-keyset \"ks\") 100.1)\n(coin.transfer \"bob\" \"alice\" 0.1)"}},"signers":[{"pubKey":"6be2f485a7af75fedb4b7f153a903f7e6000ca4aa501179c91a2450b777bd2a7","clist":[{"args":["alice","bob",100.1],"name":"coin.TRANSFER"},{"args":[],"name":"coin.GAS"}]},{"pubKey":"368820f80c324bbc7c2b0610688a7da43e39f91d118732671cd9c7500ff43cca","clist":[{"args":["bob","alice",0.1],"name":"coin.TRANSFER"}]}],"meta":{"creationTime":1580316382,"ttl":7200,"gasLimit":1200,"chainId":"0","gasPrice":1.0e-5,"sender":"alice"},"nonce":"2020-01-29 16:46:22.916695 UTC"}'

To get a condensed version for signing on a cold wallet all you have to
do is drop the cmd field. This can be done manually or scripted with
cat tx-unsigned.yaml | grep -v "^cmd:". The result would look like
this:

hash: KY6RFunty4WazQiCsKsYD-ovu-_XQByfY6scTxi9gQQ
sigs:
 368820f80c324bbc7c2b0610688a7da43e39f91d118732671cd9c7500ff43cca: null
 6be2f485a7af75fedb4b7f153a903f7e6000ca4aa501179c91a2450b777bd2a7: null

Keep in mind that when you sign these condensed versions, you won’t be
able to submit the output directly to the blockchain. You’ll have to use
combine-sigs to combine those signatures with the original
tx-unsigned.yaml file which has the full command.

Detached Signature Transaction Format

The YAML input expected by pact -u is similar to the Public
Blockchain YAML format described above
with one major difference. Instead of the keyPairs field which
requires both the public and secret keys, pact -u expects a
signers field that only needs a public key. This allows signatures
to be added on incrementally as described above without needing private
keys to all be present when the transaction is constructed.

Here is an example of how the above tx.yaml file might look:

code: |-
 (coin.transfer-create "alice" "bob" (read-keyset "ks") 100.1)
 (coin.transfer "bob" "alice" 0.1)
data:
 ks:
 keys: [368820f80c324bbc7c2b0610688a7da43e39f91d118732671cd9c7500ff43cca]
 pred: "keys-all"
publicMeta:
 chainId: "0"
 sender: alice
 gasLimit: 1200
 gasPrice: 0.0000000001
 ttl: 7200
networkId: "mainnet01"
signers:
 - public: 6be2f485a7af75fedb4b7f153a903f7e6000ca4aa501179c91a2450b777bd2a7
 caps:
 - name: "coin.TRANSFER"
 args: ["alice", "bob", 100.1]
 - name: "coin.GAS"
 args: []
 - public: 368820f80c324bbc7c2b0610688a7da43e39f91d118732671cd9c7500ff43cca
 caps:
 - name: "coin.TRANSFER"
 args: ["bob", "alice", 0.1]
type: exec

Concepts

Execution Modes

Pact is designed to be used in distinct execution modes to address the
performance requirements of rapid linear execution on a blockchain.
These are:

	Contract definition.

	Transaction execution.

	Queries and local execution.

Contract Definition

In this mode, a large amount of code is sent into the blockchain to
establish the smart contract, as comprised of modules (code), tables
(data), and keysets (authorization). This can also include
“transactional” (database-modifying) code, for instance to initialize
data.

For a given smart contract, these should all be sent as a single message
into the blockchain, so that any error will rollback the entire smart
contract as a unit.

Keyset definition

Keysets are customarily defined first, as
they are used to specify admin authorization schemes for modules and
tables. Definition creates the keysets in the runtime environment and
stores their definition in the global keyset database.

Namespace declaration

Namespace declarations provide a unique prefix for
modules and interfaces defined within the namespace scope. Namespaces
are handled differently in public and private blockchain contexts: in
private they are freely definable, and the root namespace (ie, not
using a namespace at all) is available for user code. In public
blockchains, users are not allowed to use the root namespace (which is
reserved for built-in contracts like the coin contract) and must define
code within a namespace, which may or may not be definable (ie, users
might be restricted to “user” namespaces).

Namespaces are defined using define-namespace.
Namespaces are “entered” by issuing the namespace
command.

Module declaration

Modules contain the API and data definitions for smart
contracts. They are comprised of:

	functions

	schema definitions

	table definitions

	pact special functions

	constant values

	models

	capabilities

	imports

	implements

When a module is declared, all references to native functions,
interfaces, or definitions from other modules are resolved. Resolution
failure results in transaction rollback.

Modules can be re-defined as controlled by their governance
capabilities. Often, such a function is simply a reference to an
administrative keyset. Module versioning is not supported, except by
including a version sigil in the module name (e.g., “accounts-v1”).
However, module hashes are a powerful feature for ensuring code
safety. When a module is imported with use, the module hash
can be specified, to tie code to a particular release.

As of Pact 2.2, use statements can be issued within a module
declaration. This combined with module hashes provides a high level of
assurance, as updated module code will fail to import if a dependent
module has subsequently changed on the chain; this will also propagate
changes to the loaded modules’ hash, protecting downstream modules from
inadvertent changes on update.

Module names must be unique within a namespace.

Interface Declaration

Interfaces contain an API specification and data
definitions for smart contracts. They are comprised of:

	function specifications (i.e. function signatures)

	constant values

	schema definitions

	pact specifications

	models

	capabilities specifications

	imports

Interfaces represent an abstract api that a module may
implement by issuing an implements statement within the module
declaration. Interfaces may import definitions from other modules by
issuing a use declaration, which may be used to construct new
constant definitions, or make use of types defined in the imported
module. Unlike Modules, Interface versioning is not supported. However,
modules may implement multiple interfaces.

Interface names must be unique within a namespace.

Table Creation

Tables are created at the same
time as modules. While tables are defined in modules, they are
created “after” modules, so that the module may be redefined later
without having to necessarily re-create the table.

The relationship of modules to tables is important, as described in
Table Guards.

There is no restriction on how many tables may be created. Table names
are namespaced with the module name.

Tables can be typed with a schema.

Transaction Execution

“Transactions” refer to business events enacted on the blockchain, like
a payment, a sale, or a workflow step of a complex contractual
agreement. A transaction is generally a single call to a module
function. However there is no limit on how many statements can be
executed. Indeed, the difference between “transactions” and “smart
contract definition” is simply the kind of code executed, not any
actual difference in the code evaluation.

Queries and Local Execution

Querying data is generally not a business event, and can involve data
payloads that could impact performance, so querying is carried out as a
local execution on the node receiving the message. Historical queries
use a transaction ID as a point of reference, to avoid any race
conditions and allow asynchronous query execution.

Transactional vs local execution is accomplished by targeting different
API endpoints; pact code has no ability to distinguish between
transactional and local execution.

Database Interaction

Pact presents a database metaphor reflecting the unique requirements of
blockchain execution, which can be adapted to run on different
back-ends.

Atomic execution

A single message sent into the blockchain to be evaluated by Pact is
atomic: the transaction succeeds as a unit, or does not succeed at
all, known as “transactions” in database literature. There is no
explicit support for rollback handling, except in multi-step
transactions.

Key-Row Model

Blockchain execution can be likened to OLTP (online transaction
processing) database workloads, which favor denormalized data written to
a single table. Pact’s data-access API reflects this by presenting a
key-row model, where a row of column values is accessed by a single
key.

As a result, Pact does not support joining tables, which is more
suited for an OLAP (online analytical processing) database, populated
from exports from the Pact database. This does not mean Pact cannot
record transactions using relational techniques – for example, a
Customer table whose keys are used in a Sales table would involve the
code looking up the Customer record before writing to the Sales table.

Queries and Performance

As of Pact 2.3, Pact offers a powerful query mechanism for selecting
multiple rows from a table. While visually similar to SQL, the
select and
where operations offer a streaming
interface to a table, where the user provides filter functions, and
then operates on the rowset as a list data structure using
sort and other functions.

;; the following selects Programmers with salaries >= 90000 and sorts by age descending

(reverse (sort ['age]
 (select 'employees ['first-name,'last-name,'age]
 (and? (where 'title (= "Programmer"))
 (where 'salary (< 90000))))))

;; the same query could be performed on a list with 'filter':

(reverse (sort ['age]
 (filter (and? (where 'title (= "Programmer"))
 (where 'salary (< 90000)))
 employees)))

In a transactional setting, Pact database interactions are optimized for
single-row reads and writes, meaning such queries can be slow and
prohibitively expensive computationally. However, using the
local execution capability, Pact can utilize the user
filter functions on the streaming results, offering excellent
performance.

The best practice is therefore to use select operations via local,
non-transactional operations, and avoid using select on large tables in
the transactional setting.

No Nulls

Pact has no concept of a NULL value in its database metaphor. The main
function for computing on database results,
with-read, will error if any column
value is not found. Authors must ensure that values are present for any
transactional read. This is a safety feature to ensure totality and
avoid needless, unsafe control-flow surrounding null values.

Versioned History

The key-row model is augmented by every change to column values being
versioned by transaction ID. For example, a table with three columns
“name”, “age”, and “role” might update “name” in transaction #1, and
“age” and “role” in transaction #2. Retrieving historical data will
return just the change to “name” under transaction 1, and the change to
“age” and “role” in transaction #2.

Back-ends

Pact guarantees identical, correct execution at the smart-contract layer
within the blockchain. As a result, the backing store need not be
identical on different consensus nodes. Pact’s implementation allows for
integration of industrial RDBMSs, to assist large migrations onto a
blockchain-based system, by facilitating bulk replication of data to
downstream systems.

Types and Schemas

With Pact 2.0, Pact gains explicit type specification, albeit optional.
Pact 1.0 code without types still functions as before, and writing code
without types is attractive for rapid prototyping.

Schemas provide the main impetus for types. A schema is
defined with a list of columns that can have types
(although this is also not required). Tables are then
defined with a particular schema (again, optional).

Note that schemas also can be used on/specified for object types.

Runtime Type enforcement

Any types declared in code are enforced at runtime. For table schemas,
this means any write to a table will be typechecked against the schema.
Otherwise, if a type specification is encountered, the runtime enforces
the type when the expression is evaluated.

Static Type Inference on Modules

With the typecheck repl command, the
Pact interpreter will analyze a module and attempt to infer types on
every variable, function application or const definition. Using this in
project repl scripts is helpful to aid the developer in adding “just
enough types” to make the typecheck succeed. Successful typechecking is
usually a matter of providing schemas for all tables, and argument types
for ancillary functions that call ambiguous or overloaded native
functions.

Formal Verification

Pact’s typechecker is designed to output a fully typechecked and inlined
AST for generating formal proofs in the SMT-LIB2 language. If the
typecheck does not succeed, the module is not considered “provable”.

We see, then, that Pact code can move its way up a “safety” gradient,
starting with no types, then with “enough” types, and lastly, with
formal proofs.

Note that as of Pact 2.0 the formal verification function is still under
development.

Keysets and Authorization

Pact is inspired by Bitcoin scripts to incorporate public-key
authorization directly into smart contract execution and administration.
Pact seeks to take this further by making single- and multi-sig
interactions ubiquitous and effortless with the concept of keysets,
meaning that single-signature mode is never assumed: anywhere public-key
signatures are used, single-sig and multi-sig can interoperate
effortlessly. Finally, all crypto is handled by the Pact runtime to
ensure programmers can’t make mistakes “writing their own crypto”.

Also see Guards and Capabilities below for how Pact moves
beyond just keyset-based authorization.

Keyset definition

Keysets are defined by
reading definitions from the
message payload. Keysets consist of a list of public keys and a keyset
predicate.

Examples of valid keyset JSON productions:

/* examples of valid keysets */
{
 "fully-specified-with-native-pred":
 { "keys": ["abc6bab9b88e08d","fe04ddd404feac2"], "pred": "keys-2" },

 "fully-specified-with-qual-custom":
 { "keys": ["abc6bab9b88e08d","fe04ddd404feac2"], "pred": "my-module.custom-pred" },

 "keysonly":
 { "keys": ["abc6bab9b88e08d","fe04ddd404feac2"] }, /* defaults to "keys-all" pred */

 "keylist": ["abc6bab9b88e08d","fe04ddd404feac2"] /* makes a "keys-all" pred keyset */
}

Keyset Predicates

A keyset predicate references a function by its (optionally qualified)
name, and will compare the public keys in the keyset to the key or keys
used to sign the blockchain message. The function accepts two arguments,
“count” and “matched”, where “count” is the number of keys in the keyset
and “matched” is how many keys on the message signature matched a keyset
key.

Support for multiple signatures is the responsibility of the blockchain
layer, and is a powerful feature for Bitcoin-style “multisig” contracts
(i.e. requiring at least two signatures to release funds).

Pact comes with built-in keyset predicates:
keys-all,
keys-any,
keys-2. Module authors are free to
define additional predicates.

If a keyset predicate is not specified,
keys-all is used by default.

Key rotation

Keysets can be rotated, but only by messages authorized against the
current keyset definition and predicate. Once authorized, the keyset can
be easily redefined.

Module Table Guards

When creating a table, a module
name must also be specified. By this mechanism, tables are “guarded” or
“encapsulated” by the module, such that direct access to the table via
data-access functions is authorized
only by the module’s governance. However, within module functions,
table access is unconstrained. This gives contract authors great
flexibility in designing data access, and is intended to enshrine the
module as the main “user data access API”.

See also module guards for how this concept can be
leveraged to protect more than just tables.

Note that as of Pact 3.5, the option has been added to selectively allow
unguarded reads and transaction history access in local mode only, at
the discretion of the node operator.

Row-level keysets

Keysets can be stored as a column value in a row, allowing for
row-level authorization. The following code indicates how this might
be achieved:

(defun create-account (id)
 (insert accounts id { "balance": 0.0, "keyset": (read-keyset "owner-keyset") }))

(defun read-balance (id)
 (with-read accounts id { "balance":= bal, "keyset":= ks }
 (enforce-keyset ks)
 (format "Your balance is {}" [bal])))

In the example, create-account reads a keyset definition from the
message payload using read-keyset
to store as “keyset” in the table. read-balance only allows that
owner’s keyset to read the balance, by first enforcing the keyset using
enforce-keyset.

Namespaces

Namespaces are defined by
specifying a namespace name and
associating a keyset with the
namespace. Namespace scope is entered by declaring the namespace
environment. All definitions issued after the namespace scope is entered
will be accessible by their fully qualified names. These names are of
the form namespace.module.definition. This form can also be used to
access code outside of the current namespace for the purpose of
importing module code, or implementing modules:

(implements my-namespace.my-interface)
;; or
(use my-namespace.my-module)

Code may be appended to the namespace by simply re-entering the
namespace and declaring new code definitions. All definitions must
occur within a namespace, as the global namespace (the empty namespace)
is reserved for Kadena code.

Examples of valid namespace definition and scoping:

Example: Defining a namespace

Defining a namespace requires a keyset, and a namespace name of type
string:

(define-keyset 'my-keyset)
(define-namespace 'my-namespace (read-keyset 'my-keyset))

pact> (namespace 'my-namespace)
"Namespace set to my-namespace"

Example: Accessing members of a namespace

Members of a namespace may be accessed by their fully-qualified names:

pact> (my-namespace.my-module.hello-number 3)
"Hello, your number is 3!"

;; alternatively
pact> (use my-namespace.my-module)
"Using my-namespace.my-module"
pact> (hello-number 3)
"Hello, your number is 3!"

Example: Importing module code or implementing interfaces at a namespace

Modules may be imported at a namespace, and interfaces my be implemented
in a similar way. This allows the user to work with members of a
namespace in a much less verbose and cumbersome way.

; in my-namespace
(module my-module EXAMPLE_GUARD
 (implements my-other-namespace.my-interface)

 (defcap EXAMPLE_GUARD ()
 (enforce-keyset 'my-keyset))

 (defun hello-number:string (number:integer)
 (format "Hello, your number is {}!" [number]))
)

Example: appending code to a namespace

If one is simply appending code to an existing namespace, then the
namespace prefix in the fully qualified name may be ommitted, as using a
namespace works in a similar way to importing a module: all toplevel
definitions within a namespace are brought into scope when
(namespace 'my-namespace) is declared. Continuing from the previous
example:

pact> (my-other-namespace.my-other-module.more-hello 3)
"Hello, your number is 3! And more hello!"

; alternatively
pact> (namespace 'my-other-namespace)
"Namespace set to my-other-namespace"

pact> (use my-other-module)
"Using my-other-module"

pact> (more-hello 3)
"Hello, your number is 3! And more hello!"

Guards, Capabilities and Events

Pact 3.0 introduces powerful new concepts to allow programmers to
express and implement authorization schemes correctly and easily:
guards, which generalize keysets, and capabilities, which generalize
authorizations or rights. In Pact 3.7, capabilities also function as
events.

Guards

A guard is essentially a predicate function over some environment that
enables a pass-fail operation, enforce-guard, to be able to test a
rich diversity of conditions.

A keyset is the quintessential guard: it specifies a list of keys, and a
predicate function to verify how many keys were used to sign the current
transaction. Enforcement happens via enforce-keyset, causing the
transaction to fail if the necessary keys are not found in the signing
set.

However, there are other predicates that are equally useful:

	We might want to enforce that a module is the only entity that can
perform some function, for instance to debit some account.

	We might want to ensure that a user has provided some secret, like a
hash preimage, as seen in atomic swaps.

	We might want to combine all of the above into a single, enforceable
rule: “ensure user A signed the transaction AND provided a hash
preimage AND is only executable by module foo”.

Finally, we want guards to interoperate with each other, so that smart
contract code doesn’t have to worry about what kind of guard is used to
mediate access to some resource or right. For instance, it is easy to
think of entries in a ledger having diverse guards, where some tokens
are guarded by keysets, while others are autonomously owned by modules,
while others are locked in some kind of escrow transaction: what’s
important is that the guard always be enforced for the given account,
not what type of guard it is.

Guards address all of these needs. Keysets are now just one type of
guard, to which we add module guards, pact guards, and completely
customizable “user guards”. You can store any type of guard in the
database using the guard type. The keyset type is still
supported, but developers should switch to guard to enjoy the
enhanced flexibility.

Capabilities

Capabilities are a new construct in Pact 3.0 that draws from capability
theory to offer a system for managing runtime user rights in an
explicit, literate, and principled fashion.

Simply put, a capability is a “ticket” that when acquired allows the
user to perform some sensitive task. If the user is unable to acquire
the ticket, portions of the transaction that demand the ticket will
fail.

Using capabilities to protect code

Code can demand that a capability be “already granted”, that is, make no
attempt to acquire the ticket, but fail if it was not acquired somewhere
else. This is done with the construct require-capability.

Code can also directly attempt to acquire a capability, but only for a
specific scope. This is done with the special form
with-capability, which, like with-read, scopes a body of code.
Here, the ticket is granted while this body of code is executing, and is
revoked when the body leaves execution.

Expressing capabilities in code: defcap

We’ve described capabilities like a “ticket”, so let’s continue by
adding some attributes to this ticket:

	It needs a general name, like “ALLOW_ENTRY”, to identify the
operation being protected.

	It needs parameters, so that a capability can be granted to a
specific entity (“user-id”), and/or for a particular amount (“amount”
some decimal, “active” flag).

	It needs a predicate function to perform whatever tests govern
whether to grant the ticket.

Pact provides the defcap construct to do this.

(defcap ALLOW_ENTRY (user-id:string)
 "Govern entry operation."
 (with-read table user-id
 { "guard" := guard, "active" := active }
 (enforce-guard guard)
 (enforce active "Only active users allowed entry")))

ALLOW_ENTRY is the name or domain of the capability. user-id
is a parameter. Together, they form the specification of a
capability. Thus, (ALLOW_ENTRY 'dave) and (ALLOW_ENTRY 'carol)
describe separate capailities. (Note that capability theory’s notion of
designation is indicated here, which we’ll return to when we discuss
capabilities and signatures).

The body implements the predicate function. It accesses whatever data it
needs to perform necessary tests to protect against improper granting of
the ticket. The body can do more than that – it can import or compose
additional capabilities, for instance – and it can even modify database
state. This might be used to ensure a capability cannot be granted ever
again after the first time it is acquired, for example.

To acquire this capability, you would invoke with-capability:

(defun enter (user-name)
 (with-capability (ALLOW_ENTRY user-name)
 (do-entry user-name) ;; call "protected" function
 (update-entry-status user-name) ;; update database
)
 (record-audit "ENTRY" user-name) ;; some "unsafe" operation
)

To demand or require the capability, you would use
require-capability:

(defun do-entry (user-name)
 (require-capability (ALLOW_ENTRY user-name))
 ...
)

Requiring capabilities allow for “private” or “restricted” functions
than cannot be called directly. Here we see that do-entry can only
be called “privately”, by code inside the module somewhere. What’s more,
it can only be called in an outer operation for this user in particular,
“restricting” it to that user.

Composing capabilities

A defcap can “import” other capabilities, for modular factoring of
guard code, or to “compose” the outer capability from “smaller”, “inner”
capabilities.

(defcap ALLOW_ENTRY (user-id:string)
 "Govern entry operation."
 (with-read table user-id
 { "guard" := guard, "active" := active }
 (enforce-guard guard)
 (enforce active "Only active users allowed entry")
 (compose-capability DB_LOG) ;; allow db logging while ALLOW_ENTRY is in scope
))

Composed capabilities are only in scope when their “parent” capability
is granted.

Signature capabilities

In Pact transaction messages, each signer can “scope” their signature to
one or more capabilities. This restricts keyset guard operations on that
signature: keysets demanding the scoped signature will only succeed
while the ticket is held, or is in the process of being acquired –
keysets are often checked in order to grant a capability.

This “scoping” allows the signer to safely call untrusted code. For
instance, in the Chainweb gas system, the “sender” signs the message to
fund whatever gas costs are charged for the transaction. By signing the
message, the sender has potentially allowed any code to debit from their
account!

With that sender’s signature has (GAS) added to it, it is scoped
within gas payments in the coin contract only. Third-party code is
prohibited from accessing that account during the transaction.

Signatures and Managed Capabilities

Signature capabilities are also a mechanism to install capabilities,
but only if that capability is managed. “Vanilla” capabilities are
just tickets to show before you try some protected operation, but
managed capabilities are able to change the state of a capability as
it is brought into and out of scope. The ticket metaphor breaks down
here, as this is now a dynamic object that mediates whether capabilities
are acquired.

If a signer attaches a managed capability to their signature list, the
capability is “installed”, which is not the same as “granted” or
“acquired”: if the capability’s predicate function allows this signer to
install the capability, the installed version will then govern any code
needing the capability to unlock some protected operation, by means of a
manager function.

Capability management with a manager function

A managed capability allows for safe interoperation with otherwise
untrusted code. By signing with a managed capability, you are allowing
some untrusted code to request grant of the capability; if the
capability was not in the signature list, the untrusted code cannot
request it.

If the capability manager function doesn’t grant the request, the
untrusted code fails to execute. The common usage of this is to grant a
payment to third-party code, such that the third-party code can directly
transfer on behalf of the user some amount of coin, but only up to the
indicated amount.

The TRANSFER managed capability

(defcap TRANSFER (sender:string receiver:string amount:decimal)
 @managed amount TRANSFER_mgr
 (compose-capability (DEBIT sender))
 (compose-capability (CREDIT receiver)))

(defun TRANSFER_mgr:decimal (managed:decimal requested:decimal)
 (enforce (>= managed requested) "Transfer quantity exhausted")
 (- managed requested) ;; update managed quantity for next time
)

TRANSFER allows for sender to approve any number of payments to
receiver up to some amount. Once the amount is exceeded, the
capability can no longer be brought into scope.

This allows third-party code to directly enact payments. Managed
capabilities are an important feature to allow smart contracts to
directly call some other trusted code in a tightly-constrained context.

Automatic “one-shot” capability management

A managed capability that does not specify a manager function is
“auto-managed”, meaning that after install, the capability can be
granted exactly once for the given parameters. Further attempts will
fail after the initial grant goes out of scope.

In the following example, the capability will have “one-shot” automatic
management:

(defcap VOTE (member:string)
 @managed
 (validate-member member))

Guards vs Capabilities

Guards and capabilities can be confusing: given we have guards like
keysets, what do we need the capability concept for?

Guards allow us to define a rule that must be satisfied for the
transaction to proceed. As such, they really are just a way to declare a
pass-fail condition or predicate. The Pact guard system is flexible
enough to express any rule you can code.

Capabilities allow us to declare how that rule is deployed to grant some
authority. In doing so, they enumerate the critical rights that are
extended to users of the smart contract, and “protect” code from being
called incorrectly.

Note also that capabilities can only be granted inside the module code
that declares them, whereas guards are simply data that can be tested
anywhere. This is an important security property, as it ensures an
attacker cannot elevate their privileges from outside the module code.

Modeling capabilities with compose-capability

The only problem with the above code is it pushed the awareness of DEBIT
into the transfer function, whereas separation of concerns would
better have it housed in debit. What’s more, we’d like to ensure
that debit is always called in a “transfer” capacity, that is, that
the corresponding credit occurs. Thus, the better way to model this
is with two capabilities, with TRANSFER being a “no-guard” capability
that simply encloses debit and credit calls:

(defcap TRANSFER (from to amount)
 (compose-capability (DEBIT from))
 (compose-capability (CREDIT to)))

(defcap DEBIT (from)
 (enforce-guard (at 'guard (read table from))))

(defcap CREDIT (to)
 (check-account-exists to))

(defun transfer (from to amount)
 (with-capability (TRANSFER to from amount)
 (debit from amount)
 (credit to amount)))

(defun debit (user amount)
 (require-capability (DEBIT user))
 (update accounts user ...))

(defun credit (user amount)
 (require-capability (CREDIT user)
 (update accounts user ...)))

Thus, TRANSFER protects debit and credit from being used
independently, while DEBIT governs specifically the ability to
debit, enforcing the guard, while CREDIT simply creates a
“restricted” capability for credit.

Improving efficiency

Once capabilities are granted they are installed into the pact
environment for the scope of the call to with-capability; once that
form is exited, the capability is uninstalled. This scoping prevents
duplicate testing of the predicate: capabilities that have already
been acquired (or installed) and are in-scope are not re-evaluated,
either by acquiring or requiring.

defcap details

Since a defcap production both specifies a “domain” of capability
instances, and implements the guard function, it has some surprising
features. Since capability grant is cached in the environment, the
function does not need to be called when invoked in with-capability
or require-capability asks for some already-granted ticket.

As a result, ``defcap``s cannot be executed directly, as arbitrary
execution would violate the semantics described here. This is an
important security property as it ensures that the granting code can
only be called in approved contexts, inside the module.

Testing scoping signatures with capabilities

Scoped signatures can be tested using the new env-sigs REPL function
as follows:

(module accounts GOV
 ...
 (defcap PAY (sender receiver amount)
 (enforce-keyset (at 'keyset (read accounts sender))))

 (defun pay (sender receiver amount)
 (with-capability (PAY sender receiver amount)
 (transfer sender receiver amount)))
 ...
)

(set-sigs [{'key: "alice", 'caps: ["(accounts.PAY \"alice\" \"bob\" 10.0)"]}])
(accounts.pay "alice" "bob" 10.0) ;; works as the cap match the signature caps

(set-sigs [('key: "alice", 'caps: ["(accounts.PAY \"alice\" "\carol\" 10.0)"]}])
(expect-failure "payment to bob will no longer be able to enforce alice's keyset"
 (accounts.pay "alice" "bob" 10.0))

Guard types

Guards come in five flavors: keyset, keyset reference, module, pact, and
user guards.

Keyset guards.

These are the classic pact keysets. Using the keyset type is the one
instance where you can restrict a guard subtype, otherwise the guard
type obscures the implementation type to prevent developers from
engaging in guard-specific control flow, which would be against best
practices. Again, it is better to switch to guard unless there is a
specific need to use keysets.

(enforce-guard (read-keyset "keyset"))

Keyset reference guards

Keysets can be installed into the environment with define-keyset,
but if you wanted to store a reference to a defined keyset, you would
need to use a string type. To make environment keysets interoperate
with concrete keysets and other guards, we introduce the “keyset
reference guard” which indicates that a defined keyset is used instead
of a concrete keyset.

(enforce-guard (keyset-ref-guard "foo"))

(update accounts user { "guard": (keyset-ref-guard "foo") })

Module guards

Module guards are a special guard that when enforced will fail unless:

	the code calling the enforce was called from within the module, or

	module governance is granted to the current transaction.

This is for allowing a module or smart contract to autonomously “own”
and manage some asset. As such it is operationally identical to how
module table access is guarded: only module code or a transaction having
module admin can directly write to a module tables, or upgrade the
module, so there is no need to use a module guard for these in-module
operations. A module guard is used to “project” module admin outside of
the module (e.g. to own coins in an external ledger), or “inject” module
admin into an internal database representation (e.g. to own an
internally-managed asset alongside other non-module owners).

See Module Governance for more information
about module admin management.

create-module-guard takes a string argument to allow naming the
guard, to indicate the purpose or role of the guard.

(enforce-guard (create-module-guard "module-owned-asset"))

Pact guards

Pact guards are a special guard that will only pass if called in the
specific defpact execution in which the guard was created.

Imagine an escrow transaction where the funds need to be moved into an
escrow account: if modeled as a two-step pact, the funds can go into a
special account named after the pact id, guarded by a pact guard. This
means that only code in a subsequent step of that particular pact
execution (ie having the same pact ID) can pass the guard.

(defpact escrow (from to amount)
 (step (with-capability (ESCROW) (init-escrow from amount)))
 (step (with-capability (ESCROW) (complete-escrow to amount))))

(defun init-escrow (from amount)
 (require-capability (ESCROW))
 (create-account (pact-id) (create-pact-guard "escrow"))
 (transfer from (pact-id) amount))

(defun complete-escrow (to amount)
 (require-capability (ESCROW))
 (with-capability (USER_GUARD (pact-id)) ;; enforces guard on account (pact-id)
 (transfer (pact-id) to amount)))

Pact guards turn pact executions into autonomous processes that can own
assets, and is a powerful technique for trustless asset management
within a multi-step operation.

User guards

User guards allow the user to design an arbitrary predicate function to
enforce the guard, given some initial data. For instance, a user guard
could be designed to require two separate keysets to be enforced:

(defun both-sign (ks1 ks2)
 (enforce-keyset ks1)
 (enforce-keyset ks2))

(defun install-both-guard ()
 (write guard-table "both"
 { "guard":
 (create-user-guard
 (both-sign (read-keyset "ks1) (read-keyset "ks2")))
 }))

(defun enforce-both-guard ()
 (enforce-guard (at "guard" (read guard-table "both"))))

User guards can seem similar to capabilities but are different, namely
in that they can be stored in the database and passed around like plain
data. Capabilities are in-module rights that can only be enforced within
the declaring module, and offer scoping and the other benefits mentioned
above. User guards are for implementing custom predicate logic that
can’t be expressed by other built-in guard types.

HTLC guard example

The following example shows how a “hash timelock” guard can be made, to
implement atomic swaps.

(create-hashlock-guard (secret-hash timeout signer-ks)
 (create-user-guard (enforce-hashlock secret-hash timeout signer-ks)))

(defun enforce-hashlock (secret-hash timeout signer-ks)
 (enforce-one [
 (enforce (= (hash (read-msg "secret")) secret-hash))
 (and
 (enforce-keyset signer-ks)
 (enforce (> (at "block-time" (chain-data)) timeout) "Timeout not passed"))
]))

Events

Pact 3.7 introduces events which are emitted in the
course of a transaction and included in the transaction receipt to allow
for monitoring and proving via SPV that a particular event transpired.

In Pact, events are modeled as capabilities, for the following reasons:
- Capabilities already have the right shape for an event, which is
essentially arbitrary data published under a topic or name. With
capabilities, the capability name is the topic, and the arguments are
the data. - The acquisition of managed capabilities are a bona-fide
event. Events complete the managed lifecycle, where you might
install/approve a capability of some quantity on the way in, but not
necessarily see what quantity was used. With events, the output of the
actually acquired capability is present in the receipt. - Capabilities
are protected such that they can only be acquired in module code, which
is appropriate as well for events.

The @event metadata tag

Any capability can cause events to be emitted upon acquisition by using
the @event metadata tag.

(defcap BURN(qty:decimal)
 @event
 ...
)

@event cannot be used alongside @managed, because …

Managed capabilities are automatically eventing

Managed capabilites emit events automatically with the parameters
specified in acquisition (as opposed to install). From an eventing point
of view, managed capabilities are those capabilities that can only
“happen once”. Whereas, a non-managed, eventing capability can fire
events an arbitrary amount of times.

Testing for events

Use env-events to test for emitted events in repl
scripts.

Generalized Module Governance

Before Pact 3.0, module upgrade and administration was governed by a
defined keyset that is referenced in the module definition. With Pact
3.0, this string value can alternately be an unqualified bareword
that references a defcap within the module body. This defcap is
the module governance capability.

With the introduction of the governance capability syntax, Pact modules
now support generalized module governance, allowing for module authors
to design any governance scheme they wish. Examples include tallying a
stakeholder vote on an upgrade hash, or enforcing more than one keyset.

Keysets vs governance functions

To illustrate, let’s consider a module governed by a keyset:

(module foo 'foo-keyset ...)

This indicates that if a user tried to upgrade the module, or directly
write to the module tables, 'foo-keyset would be enforced on the
transaction signature set.

This can be directly implemented in a governance capability as follows:

(module foo GOVERNANCE
 ...
 (defcap GOVERNANCE ()
 (enforce-keyset 'foo-keyset))
 ...
)

Note the capability can have whatever name desired; GOVERNANCE is a good
idiomatic name however.

Governance capability and module admin

As a defcap, the governance function cannot be called directly by
user code. It is automatically invoked in the following circumstances:

	A module upgrade is being attempted

	Module tables are being directly accessed outside the module code

	A module guard for this module is being
enforced.

In these cases, the transaction is tested for elevated access to “module
admin”, defined as the grant of the module admin capability. This
capability cannot be expressed in user code, so it cannot be installed,
acquired, required or composed.

However, the implementing capability, here called GOVERNANCE, can be
installed or acquired etc. If passed, this gets scoped like any normal
capability, here over some protected code that only module admins can
run.

Module admin capability scope

The special module admin capability, once automatically installed in the
cases described above, stays in scope for the rest of the calling
transaction. This is unlike “user” capabilities, which can only be
acquired in a fixed scope specified by the body of with-capability.

This may sound worrisome, but the rationale is that a governance
capability once granted should not be based on some transient fact that
can become false during a single transaction. This is important
especially in module upgrades, which can change the governance
capability itself: if the module admin was tested again this could
cause the upgrade to fail, for instance when migrating data with direct
table rights.

Capability risks

Also, this means that, when initially installing a module, the
governance function is not invoked. This is different behavior than
when a keyset is specified: the keyset must be defined and it is
enforced, to ensure that the keyset actually exists.

Module governance is therefore more “risky” as it can mean that the
module cannot be upgraded if there is a bug in the governance
capability. Clearly, care must be taken when implementing module
capabilities, and using the Pact formal verification system is highly
recommended here.

Example: stakeholder upgrade vote

In the following code, a module can be upgraded based on a vote. An
upgrade is designed as a Pact transaction, and its hash and code are
distributed to stakeholders, who vote for the upgrade. Once the upgrade
is sent in, the vote is tallied in the governance capability, and if a
simple majority is found, the code is upgraded.

(module govtest count-votes
 "Demonstrate programmable governance showing votes \
 \ for upgrade transaction hashes"
 (defschema vote
 vote-hash:string)

 (deftable votes:{vote})

 (defun vote-for-hash (user hsh)
 "Register a vote for a particular transaction hash"
 (write votes user { "vote-hash": hsh })
)

 (defcap count-votes ()
 "Governance capability to tally votes for the upgrade hash".
 (let* ((h (tx-hash))
 (tally (fold (do-count h)
 { "for": 0, "against": 0 }
 (keys votes)))
)
 (enforce (> (at 'for tally) (at 'against tally))
 (format "vote result: {}, {}" [h tally])))
)

 (defun do-count (hsh tally u)
 "Add to TALLY if U has voted for HSH"
 (bind tally { "for" := f, "against" := a }
 (with-read votes u { 'vote-hash := v }
 (if (= v hsh)
 { "for": (+ 1 f), "against": a }
 { "for": f, "against": (+ 1 a) })))
)

Interfaces

An interface, as defined in Pact, is a collection of models used for
formal verification, constant definitions, and typed function
signatures. When a module issues an implements, then
that module is said to ‘implement’ said interface, and must provide an
implementation . This allows for abstraction in a similar sense to
Java’s interfaces, Scala’s traits, Haskell’s typeclasses or OCaML’s
signatures. Multiple interfaces may be implemented in a given module,
allowing for an expressive layering of behaviors.

Interfaces are declared using the interface keyword, and providing a
name for the interface. Since interfaces cannot be upgraded, and no
function implementations exist in an interface aside from constant data,
there is no notion of governance that need be applied. Multiple
interfaces may be implemented by a single module. If there are
conflicting function names among multiple interfaces, then the two
interfaces are incompatible, and the user must either inline the code
they want, or redefine the interfaces to the point that the conflict is
resolved.

Constants declared in an interface can be accessed directly by their
fully qualified name namespace.interface.const, and so, they do not
have the same naming constraints as function signatures.

Additionally, interfaces my make use of module declarations, admitting
use of the use keyword, allowing
interfaces to import members of other modules. This allows interface
signatures to be defined in terms of table types defined in an imported
module.

Example: Declaring and implementing an interface

(interface my-interface
 (defun hello-number:string (number:integer)
 @doc "Return the string \"Hello, $number!\" when given a string"
)

 (defconst SOME_CONSTANT 3)
)

(module my-module (read-keyset 'my-keyset)
 (implements my-interface)

 (defun hello-number:string (number:integer)
 (format "Hello, {}!" [number]))

 (defun square-three ()
 (* my-interface.SOME_CONSTANT my-interface.SOME_CONSTANT))
)

Declaring models in an interface

Formal verification is implemented at
multiple levels within an interface in order to provide an extra level
of security. Models may be declared either within the body of the
interface or at the function level in the same way that one would
declare them in a module, with the exception that not all models are
applicable to an interface. Indeed, since there is no abstract notion of
tables for interfaces, abstract table invariants cannot be declared.
However, if an interface imports table schema and types from a module
via the use keyword, then the interface
can define body and function models that apply directly to the concrete
table type. Otherwise, all properties are candidates for declaration in
an interface.

When models are declared in an interface, they are appeneded to the list
of models present in the implementing module at the level of
declaration: body-level models are appended to body-level models, and
function-level models are appended to function-level models. This allows
users to extend the constraints of an interface with models applicable
to specific business logic and implementation.

Declaring models shares the same syntax with modules:

Example: declaring models, tables, and importing modules in an interface

(interface coin-sig

 "Coin Contract Abstract Interface Example"

 (use acct-module)

 (defun transfer:string (from:string to:string amount:integer)
 @doc "Transfer money between accounts"
 @model [(property (row-enforced accounts "ks" from))
 (property (> amount 0))
 (property (= 0 (column-delta accounts "balance")))
]
)
)

Module References

Pact 3.7 gains a form of genericism with module references. This is
motivated by the desire to interoperate between modules that implement a
common interface, and to be able to treat the indicated module as a data
value to gain polymorphism across modules.

Modules and interfaces thus need to be referenced directly, which is
simply accomplished by issuing their name in code.

(module foo 'k
 (defun bar () 0))

(namespace ns)

(interface bar
 (defun quux:string ()))

(module zzz 'k
 (implements bar)
 (defun quux:string () "zzz"))

foo ;; module reference to 'foo', of type 'module'
ns.bar ;; module reference to `bar` interface, also of type 'module'
ns.zzz ;; module reference to `zzz` module, of type 'module{ns.bar}'

Using a module reference in a function is accomplished by specifying the
type of the module reference argument, and using the dereference
operator :: to invoke a member function of the
interfaces specified in the type.

(interface baz
 (defun quux:bool (a:integer b:string))
 (defconst ONE 1)
)
(module impl 'k
 (implements baz)
 (defun quux:bool (a:integer b:string)
 (> (length b) a))
)

...

(defun foo (bar:module{baz})
 (bar::quux 1 "hi") ;; derefs 'quux' on whatever module is passed in
 bar::ONE ;; directly references interface const
)

...

(foo impl) ;; 'impl' references the module defined above, of type 'module{baz}'

Module references can be used as normal pact values, which includes
storage in the database.

Computational Model

Here we cover various aspects of Pact’s approach to computation.

Turing-Incomplete

Pact is turing-incomplete, in that there is no recursion (recursion is
detected before execution and results in an error) and no ability to
loop indefinitely. Pact does support operation on list structures via
map, fold
and filter, but since there is no
ability to define infinite lists, these are necessarily bounded.

Turing-incompleteness allows Pact module loading to resolve all
references in advance, meaning that instead of addressing functions in a
lookup table, the function definition is directly injected (or
“inlined”) into the callsite. This is an example of the performance
advantages of a Turing-incomplete language.

Single-assignment Variables

Pact allows variable declarations in let expressions and
bindings. Variables are immutable: they cannot be
re-assigned, or modified in-place.

A common variable declaration occurs in the
with-read function, assigning
variables to column values by name. The
bind function offers this same
functionality for objects.

Module-global constant values can be declared with
defconst.

Data Types

Pact code can be explicitly typed, and is always strongly-typed under
the hood as the native functions perform strict type checking as
indicated in their documented type signatures.

Pact’s supported types are:

	Strings

	Integers

	Decimals

	Booleans

	Time values

	Keysets and Guards

	Lists

	Objects

	Function, pact, and
capability definitions

	Tables

	Schemas

Performance

Pact is designed to maximize the performance of transaction
execution, penalizing queries and module
definition in favor of fast recording of business events on the
blockchain. Some tips for fast execution are:

Single-function transactions

Design transactions so they can be executed with a single function call.

Call with references instead of use

When calling module functions in transactions, use reference
syntax instead of importing the module with
use. When defining modules that reference other module
functions, use is fine, as those references will be inlined at
module definition time.

Hardcoded arguments vs. message values

A transaction can encode values directly into the transactional code:

(accounts.transfer "Acct1" "Acct2" 100.00)

or it can read values from the message JSON payload:

(defun transfer-msg ()
 (transfer (read-msg "from") (read-msg "to")
 (read-decimal "amount")))
...
(accounts.transfer-msg)

The latter will execute slightly faster, as there is less code to
interpret at transaction time.

Types as necessary

With table schemas, Pact will be strongly typed for most use cases, but
functions that do not use the database might still need types. Use the
typecheck REPL function to add the necessary types.
There is a small cost for type enforcement at runtime, and too many type
signatures can harm readability. However types can help document an API,
so this is a judgement call.

Control Flow

Pact supports conditionals via if, bounded
looping, and of course function application.

Use enforce

“If” should never be used to enforce business logic invariants: instead,
enforce is the right choice, which
will fail the transaction.

Indeed, failure is the only non-local exit allowed by Pact. This
reflects Pact’s emphasis on totality.

Note that enforce-one (added in
Pact 2.3) allows for testing a list of enforcements such that if any
pass, the whole expression passes. This is the sole example in Pact of
“exception catching” in that a failed enforcement simply results in the
next test being executed, short-circuiting on success.

Use built-in keyset predicates

The built-in keyset functions
keys-all,
keys-any,
keys-2 are hardcoded in the interpreter
to execute quickly. Custom keysets require runtime resolution which is
slower.

Functional Concepts

Pact includes the functional-programming “greatest hits”:
map, fold
and filter. These all employ partial
application, where the list item is appended
onto the application arguments in order to serially execute the
function.

(map (+ 2) [1 2 3])
(fold (+) "" ["Concatenate" " " "me"])

Pact also has compose, which allows
“chaining” applications in a functional style.

Pure execution

In certain contexts Pact can guarantee that computation is “pure”, which
simply means that the database state will not be modified. Currently,
enforce, enforce-one and keyset predicate evaluation are all
executed in a pure context. defconst memoization is also
pure.

LISP

Pact’s use of LISP syntax is intended to make the code reflect its
runtime representation directly, allowing contract authors focus
directly on program execution. Pact code is stored in human-readable
form on the ledger, such that the code can be directly verified, but the
use of LISP-style s-expression syntax allows this code to
execute quickly.

Message Data

Pact expects code to arrive in a message with a JSON payload and
signatures. Message data is read using
read-msg and related functions. While
signatures are not directly readable or writable, they are evaluated as
part of keyset predicate enforcement.

JSON support

Values returned from Pact transactions are expected to be directly
represented as JSON values.

When reading values from a message via
read-msg, Pact coerces JSON types as
follows:

	String -> string

	Number -> decimal

	Boolean -> bool

	Object -> object

	Array -> list

Integer values are represented as objects and read using
read-integer.

Confidentiality

Pact is designed to be used in a confidentiality-preserving
environment, where messages are only visible to a subset of
participants. This has significant implications for smart contract
execution.

Entities

An entity is a business participant that is able or not able to see a
confidential message. An entity might be a company, a group within a
company, or an individual.

Disjoint Databases

Pact smart contracts operate on messages organized by a blockchain, and
serve to produce a database of record, containing results of
transactional executions. In a confidential environment, different
entities execute different transactions, meaning the resulting databases
are now disjoint.

This does not affect Pact execution; however, database data can no
longer enact a “two-sided transaction”, meaning we need a new concept to
handle enacting a single transaction over multiple disjoint datasets.

Confidential Pacts

An important feature for confidentiality in Pact is the ability to
orchestrate disjoint transactions in sequence to be executed by targeted
entities. This is described in the next section.

Asynchronous Transaction Automation with “Pacts”

“Pacts” are multi-stage sequential transactions that are defined as a
single body of code called a pact. Defining a multi-step
interaction as a pact ensures that transaction participants will enact
an agreed sequence of operations, and offers a special “execution scope”
that can be used to create and manage data resources only during the
lifetime of a given multi-stage interaction.

Pacts are a form of coroutine, which is a function that has multiple
exit and re-entry points. Pacts are composed of steps such
that only a single step is executed in a given blockchain transaction.
Steps can only be executed in strict sequential order.

A pact is defined with arguments, similarly to function definition.
However, arguments values are only evaluated in the execution of the
initial step, after which those values are available unchanged to
subsequent steps. To share new values with subsequent steps, a step can
yield values which the subsequent step
can recover using the special resume
binding form.

Pacts are designed to run in one of two different contexts, private and
public. A private pact is indicated by each step identifying a single
entity to execute the step, while public steps do not have entity
indicators. A pact can only be uniformly public or private: if some
steps has entity indicators and others do not, this results in an error
at load time.

Public Pacts

Public pacts are comprised of steps that can only execute in strict
sequence. Any enforcement of who can execute a step happens within the
code of the step expression. All steps are “manually” initiated by some
participant in the transaction with CONTINUATION commands sent into the
blockchain.

Private Pacts

Private pacts are comprised of steps that execute in sequence where each
step only executes on entity nodes as selected by the provided ‘entity’
argument in the step; other entity nodes “skip” the step. Private pacts
are executed automatically by the blockchain platform after the initial
step is sent in, with the executing entity’s node automatically sending
the CONTINUATION command for the next step.

Failures, Rollbacks and Cancels

Failure handling is dramatically different in public and private pacts.

In public pacts, a rollback expression is specified to indicate that the
pact can be “cancelled” at this step with a participant sending in a
CANCEL message before the next step is executed. Once the last step of a
pact has been executed, the pact will be finished and cannot be rolled
back. Failures in public steps are no different than a failure in a
non-pact transaction: all changes are rolled back. Pacts can therefore
only be canceled explicitly and should be modeled to offer all necessary
cancel options.

In private pacts, the sequential execution of steps is automated by the
blockchain platform itself. A failure results in a ROLLBACK message
being sent from the executing entity node which will trigger any
rollback expression specified in the previous step, to be executed by
that step’s entity. This failure will then “cascade” to the previous
step as a new ROLLBACK transaction, completing when the first step is
rolled back.

Yield and Resume

A step can yield values to the following step using
yield and
resume. In public, this is an
unforgeable value, as it is maintained within the blockchain pact scope.
In private, this is simply a value sent with a RESUME message from the
executed entity.

Pact execution scope and pact-id

Every time a pact is initiated, it is given a unique ID which is
retrievable using the pact-id
function, which will return the ID of the currently executing pact, or
fail if not running within a pact scope. This mechanism can thus be used
to guard access to resources, analogous to the use of keysets and
signatures. One typical use of this is to create escrow accounts that
can only be used within the context of a given pact, eliminating the
need for a trusted third party for many use-cases.

Testing pacts

Pacts can be tested in repl scripts using the
env-entity,
env-step and
pact-state repl functions to
simulate pact executions.

It is also possible to simulate pact execution in the pact server API by
formatting continuation Request yaml files into API
requests with a cont payload.

Dependency Management

Pact supports a number of features to manage a module’s dependencies on
other Pact modules.

Module Hashes

Once loaded, a Pact module is associated with a hash computed from the
module’s source code text. This module hash uniquely identifies the
version of the module. Hashes are base64url-encoded BLAKE2 256-bit
hashes. Module hashes can be examined with
describe-module:

pact> (at "hash" (describe-module 'accounts))
"ZHD9IZg-ro1wbx7dXi3Fr-CVmA-Pt71Ov9M1UNhzAkY"

Pinning module versions with use

The use special form allows a module hash to be specified, in
order to pin the dependency version. When used within a module
declaration, it introduces the dependency hash value into the module’s
hash. This allows a “dependency-only” upgrade to push the upgrade to the
module version.

Inlined Dependencies: “No Leftpad”

When a module is loaded, all references to foreign modules are resolved,
and their code is directly inlined. At this point, upstream definitions
are permanent: the only way to upgrade dependencies is to reload the
original module.

This permanence is great for user code: once a module is loaded, an
upstream provider cannot change what code is executed within. However,
this creates a big problem for upstream developers, as they cannot
upgrade the downstream code themselves in order to address an exploit,
or to introduce new features.

Blessing hashes

A trade-off is needed to balance these opposing interests. Pact offers
the ability for upstream code to break downstream dependent code at
runtime. Table access is guarded to enforce that the module hash of the
inlined dependency either matches the runtime version, or is in a set of
“blessed” hashes, as specified by bless in the module
declaration:

(module provider 'keyset
 (bless "ZHD9IZg-ro1wbx7dXi3Fr-CVmA-Pt71Ov9M1UNhzAkY")
 (bless "bctSHEz4N5Y1XQaic6eOoBmjty88HMMGfAdQLPuIGMw")
 ...
)

Dependencies with these hashes will continue to function after the
module is loaded. Unrecognized hashes will cause the transaction to
fail. However, “pure” code that does not access the database is
unaffected. This prevents a “leftpad situation” where trivial utility
functions can harm downstream code stability.

Phased upgrades with “v2” modules

Upstream providers can use the bless mechanism to phase in an important
upgrade, by renaming the upgraded module to indicate the new version,
and replacing the old module with a new, empty module that only blesses
the last version (and whatever earlier versions desired). New clients
will fail to import the “v1” code, requiring them to use the new
version, while existing users can continue to use the old version,
presumably up to some advertised time limit. The “empty” module can
offer migration functions to handle migrating user data to the new
module, for the user to self-upgrade in the time window.

Syntax

Literals

Strings

String literals are created with double-ticks:

pact> "a string"
"a string"

Strings also support multiline by putting a backslash before and after
whitespace (not interactively).

(defun id (a)
 "Identity function. \
 \Argument is returned."
 a)

Symbols

Symbols are string literals representing some unique item in the
runtime, like a function or a table name. Their representation
internally is simply a string literal so their usage is idiomatic.

Symbols are created with a preceding tick, thus they do not support
whitespace nor multiline syntax.

pact> 'a-symbol
"a-symbol"

Integers

Integer literals are unbounded, and can be positive or negative.

pact> 12345
12345
pact> -922337203685477580712387461234
-922337203685477580712387461234

Decimals

Decimal literals have potentially unlimited precision.

pact> 100.25
100.25
pact> -356452.234518728287461023856582382983746
-356452.234518728287461023856582382983746

Booleans

Booleans are represented by true and false literals.

pact> (and true false)
false

Lists

List literals are created with brackets, and optionally separated with
commas. Uniform literal lists are given a type in parsing.

pact> [1 2 3]
[1 2 3]
pact> [1,2,3]
[1 2 3]
pact> (typeof [1 2 3])
"[integer]"
pact> (typeof [1 2 true])
"list"

Objects

Objects are dictionaries, created with curly-braces specifying key-value
pairs using a colon :. For certain applications (database updates),
keys must be strings.

pact> { "foo": (+ 1 2), "bar": "baz" }
{ "foo": 3, "bar": "baz" }

Bindings

Bindings are dictionary-like forms, also created with curly braces, to
bind database results to variables using the := operator. They are
used in with-read,
with-default-read,
bind and
resume to assign variables to named
columns in a row, or values in an object.

(defun check-balance (id)
 (with-read accounts id { "balance" := bal }
 (enforce (> bal 0) (format "Account in overdraft: {}" [bal]))))

Lambdas

Lambdas, or “anonymous functions”, allow defining functions to be
applied in local scope, as opposed to defining functions at top-level
with defun.

Lambdas are supported in let, let*, and as inline arguments to
built-in function applications.

; identity function
(let ((f (lambda (x) x))) (f a))
; native example
(let ((f (lambda (x) x))) (map (f) [1 2 3]))
; Inline native example:
(map (lambda (x) x) [1 2 3])

Type specifiers

Types can be specified in syntax with the colon : operator followed
by a type literal or user type specification.

Type literals

	string

	integer

	decimal

	bool

	time

	keyset

	list, or [type] to specify the list type

	object, which can be further typed with a schema

	table, which can be further typed with a schema

	module, which must be further typed with required interfaces.

Schema type literals

A schema defined with defschema is referenced by name
enclosed in curly braces.

table:{accounts}
object:{person}

Module type literals

Module references are specified by the interfaces they
demand as a comma-delimited list.

module:{fungible-v2,user.votable}

Dereference operator

The dereference operator :: allows a member of an interface
specified in the type of a module reference to be invoked
at run-time.

(interface baz
 (defun quux:bool (a:integer b:string))
 (defconst ONE 1)
)
...
(defun foo (bar:module{baz})
 (bar::quux 1 "hi") ;; invokes 'quux' on whatever module is passed in
 bar::ONE ;; directly references interface const
)

What can be typed

Function arguments and return types

(defun prefix:string (pfx:string str:string) (+ pfx str))

Let variables

(let ((a:integer 1) (b:integer 2)) (+ a b))

Tables and objects

Tables and objects can only take a schema type literal.

(deftable accounts:{account})

(defun get-order:{order} (id) (read orders id))

Consts

(defconst PENNY:decimal 0.1)

Special forms

Docs and Metadata

Many special forms like defun accept optional documentation
strings, in the following form:

(defun average (a b)
 "take the average of a and b"
 (/ (+ a b) 2))

Alternately, users can specify metadata using a special @-prefix
syntax. Supported metadata fields are @doc to provide a
documentation string, and @model that can be used by Pact tooling to
verify the correctness of the implementation:

(defun average (a b)
 @doc "take the average of a and b"
 @model (property (= (+ a b) (* 2 result)))
 (/ (+ a b) 2))

Indeed, a bare docstring like "foo" is actually just a short form
for @doc "foo".

Specific information on Properties can be found in The Pact Property
Checking System.

bless

(bless HASH)

Within a module declaration, bless a previous version of that module as
identified by HASH. See Dependency
management for a discussion of the blessing
mechanism.

(module provider 'keyset
 (bless "ZHD9IZg-ro1wbx7dXi3Fr-CVmA-Pt71Ov9M1UNhzAkY")
 (bless "bctSHEz4N5Y1XQaic6eOoBmjty88HMMGfAdQLPuIGMw")
 ...
)

defun

(defun NAME ARGLIST [DOC-OR-META] BODY...)

Define NAME as a function, accepting ARGLIST arguments, with optional
DOC-OR-META. Arguments are in scope for BODY, one or more expressions.

(defun add3 (a b c) (+ a (+ b c)))

(defun scale3 (a b c s)
 "multiply sum of A B C times s"
 (* s (add3 a b c)))

defcap

(defcap NAME ARGLIST [DOC] BODY...)

Define NAME as a capability, specified using ARGLIST arguments, with
optional DOC. A defcap models a capability token which will be
stored in the environment to represent some ability or right. Code in
BODY is only called within special capability-related functions
with-capability and compose-capability when the token as
parameterized by the arguments supplied is not found in the environment.
When executed, arguments are in scope for BODY, one or more expressions.

(defcap USER_GUARD (user)
 "Enforce user account guard
 (with-read accounts user
 { "guard": guard }
 (enforce-guard guard)))

defconst

(defconst NAME VALUE [DOC-OR-META])

Define NAME as VALUE, with option DOC-OR-META. Value is evaluated upon
module load and “memoized”.

(defconst COLOR_RED="#FF0000" "Red in hex")
(defconst COLOR_GRN="#00FF00" "Green in hex")
(defconst PI 3.14159265 "Pi to 8 decimals")

defpact

(defpact NAME ARGLIST [DOC-OR-META] STEPS...)

Define NAME as a pact, a computation comprised of multiple steps that
occur in distinct transactions. Identical to defun except
body must be comprised of steps to be executed in strict
sequential order. Steps must uniformly be “public” (no entity indicator)
or “private” (with entity indicator). With private steps, failures
result in a reverse-sequence “rollback cascade”.

(defpact payment (payer payer-entity payee
 payee-entity amount)
 (step-with-rollback payer-entity
 (debit payer amount)
 (credit payer amount))
 (step payee-entity
 (credit payee amount)))

Public defpacts may be nested (though the recursion restrictions apply,
so it must be a different defpact). They may be kicked off like a
regular function call within a defpact, but are continued after the
first step by calling continue with the same arguments.

As such, they have the following restrictions: - The number of steps of
the child must match the number of steps of the parent. - If a parent
defpact step has the rollback field, so must the child. If parent steps
roll back, so do child steps. - continue must be called with the
same continuation arguments as the defpact originally dispatched, to
support multiple nested defpacts of the same function but with different
arguments.

The following example shows well-formed defpacts with equal number of
steps, nested rollbacks and continue:

(defpact payment (payer payee amount)
 (step-with-rollback
 (debit payer amount)
 (credit payer amount))
 (step payee-entity
 (credit payee amount)))

...
(defpact split-payment (payer payee1 payee2 amount ratio)
 (step-with-rollback
 (let
 ((payment1 (payment payer payee1 (* amount ratio)))
 (payment2 (payment payer payee2 (* amount (- 1 ratio))))
)
 "step 0 complete"
)
 (let
 ((payment1 (continue (payment payer payee1 (* amount ratio))))
 (payment2 (continue (payment payer payee2 (* amount (- 1 ratio)))))
)
 "step 0 rolled back"
)
)
 (step
 (let
 ((payment1 (continue (payment payer payee1 (* amount ratio))))
 (payment2 (continue (payment payer payee2 (* amount (- 1 ratio)))))
)
 "step 1 complete"
)
)
)

defschema

(defschema NAME [DOC-OR-META] FIELDS...)

Define NAME as a schema, which specifies a list of FIELDS. Each field
is in the form FIELDNAME[:FIELDTYPE].

(defschema accounts
 "Schema for accounts table".
 balance:decimal
 amount:decimal
 ccy:string
 data)

deftable

(deftable NAME[:SCHEMA] [DOC-OR-META])

Define NAME as a table, used in database functions. Note the table
must still be created with
create-table.

let

(let (BINDPAIR [BINDPAIR [...]]) BODY)

Bind variables in BINDPAIRs to be in scope over BODY. Variables within
BINDPAIRs cannot refer to previously-declared variables in the same let
binding; for this use let*.

(let ((x 2)
 (y 5))
 (* x y))
> 10

let*

(let* (BINDPAIR [BINDPAIR [...]]) BODY)

Bind variables in BINDPAIRs to be in scope over BODY. Variables can
reference previously declared BINDPAIRS in the same let. let* is
expanded at compile-time to nested let calls for each BINDPAIR; thus
let is preferred where possible.

(let* ((x 2)
 (y (* x 10)))
 (+ x y))
> 22

cond;

(cond (TEST BRANCH) [(TEST2 BRANCH2) [...]] ELSE-BRANCH)

Special form/sugar to produce a series of “if-elseif-else” expressions,
such that if TEST1 passes, BRANCH1 is evaluated, otherwise followed by
evaluating TEST2 -> BRANCH2 etc. ELSE-BRANCH is evaluated if all tests
fail.

cond is syntactically expanded such that

(cond
 (a b)
 (c d)
 (e f)
 g)

is expanded to:

(if a b (if c d (if e f g)))

step

(step EXPR)
(step ENTITY EXPR)

Define a step within a defpact, such that any prior steps
will be executed in prior transactions, and later steps in later
transactions. Including an ENTITY argument indicates that this step is
intended for confidential transactions. Therefore, only the ENTITY would
execute the step, and other participants would “skip” it.

step-with-rollback

(step-with-rollback EXPR ROLLBACK-EXPR)
(step-with-rollback ENTITY EXPR ROLLBACK-EXPR)

Define a step within a defpact similarly to
step but specifying ROLLBACK-EXPR. With ENTITY,
ROLLBACK-EXPR will only be executed upon failure of a subsequent step,
as part of a reverse-sequence “rollback cascade” going back from the
step that failed to the first step. Without ENTITY, ROLLBACK-EXPR
functions as a “cancel function” to be explicitly executed by a
participant.

use

(use MODULE)
(use MODULE HASH)
(use MODULE IMPORTS)
(use MODULE HASH IMPORTS)

Import an existing MODULE into a namespace. Can only be issued at the
top-level, or within a module declaration. MODULE can be a string,
symbol or bare atom. With HASH, validate that the imported module’s hash
matches HASH, failing if not. Use
describe-module to query for
the hash of a loaded module on the chain.

An optional list of IMPORTS consisting of function, constant, and schema
names may be supplied. When this explicit import list is present, only
those names will be made available for use in the module body. If no
list is supplied, then every name in the imported module will be brought
into scope. When two modules are defined in the same transaction, all
names will be in scope for all modules, and import behavior will be
defaulted to the entire module. IMPORTS may only be empty when a module
hash is also supplied. If a module hash is not supplied, IMPORTS are
required to be either a non-empty list, or left undeclared.

(use accounts)
(transfer "123" "456" 5 (time "2016-07-22T11:26:35Z"))
"Write succeeded"

(use accounts "ToV3sYFMghd7AN1TFKdWk_w00HjUepVlqKL79ckHG_s")
(transfer "123" "456" 5 (time "2016-07-22T11:26:35Z"))
"Write succeeded"

(use accounts [transfer example-fun])
(transfer "123" "456" 5 (time "2016-07-22T11:26:35Z"))
"Write succeeded"

(use accounts "ToV3sYFMghd7AN1TFKdWk_w00HjUepVlqKL79ckHG_s" [transfer example-fun])
(transfer "123" "456" 5 (time "2016-07-22T11:26:35Z"))
"Write succeeded"

interface

(interface NAME [DOR-OR-META] BODY...)

Define and install interface NAME, with optional DOC-OR-META.

BODY is composed of definitions that will be scoped in the module. Valid
expressions in a module include:

	defun

	defconst

	defschema

	defpact

	defcap

	use

	models

(interface coin-sig
 "'coin-sig' represents the Kadena Coin Contract interface. This contract \
 \provides both the the general interface for a Kadena's token, supplying a \
 \transfer function, coinbase, account creation and balance query."
 (defun create-account:string (account:string guard:guard)
 @doc "Create an account for ACCOUNT, with GUARD controlling access to the \
 \account."
 @model [(property (not (= account "")))]
)
 (defun transfer:string (sender:string receiver:string amount:decimal)
 @doc "Transfer AMOUNT between accounts SENDER and RECEIVER on the same \
 \chain. This fails if either SENDER or RECEIVER does not exist. \
 \Create-on-transfer can be done using the 'transfer-and-create' function."
 @model [(property (> amount 0.0))
 (property (not (= sender receiver)))
]
)
 (defun account-balance:decimal (account:string)
 @doc "Check an account's balance"
 @model [(property (not (= account "")))]
)
)

module

(module NAME KEYSET-OR-GOVERNANCE [DOC-OR-META] BODY...)

Define and install module NAME, with module admin governed by
KEYSET-OR-GOVERNANCE, with optional DOC-OR-META.

If KEYSET-OR-GOVERNANCE is a string, it references a keyset that has
been installed with define-keyset that will be tested whenever
module admin is required. If KEYSET-OR-GOVERNANCE is an unqualified
atom, it references a defcap capability which will be acquired if
module admin is requested.

BODY is composed of definitions that will be scoped in the module. Valid
productions in a module include:

	defun

	defpact

	defcap

	deftable

	defschema

	defconst

	implements

	use

	bless

(module accounts 'accounts-admin
 "Module for interacting with accounts"

 (defun create-account (id bal)
 "Create account ID with initial balance BAL"
 (insert accounts id { "balance": bal }))

 (defun transfer (from to amount)
 "Transfer AMOUNT from FROM to TO"
 (with-read accounts from { "balance": fbal }
 (enforce (<= amount fbal) "Insufficient funds")
 (with-read accounts to { "balance": tbal }
 (update accounts from { "balance": (- fbal amount) })
 (update accounts to { "balance": (+ tbal amount) }))))
)

implements

(implements INTERFACE)

Specify that containing module implements interface INTERFACE. This
requires the module to implement all functions, pacts, and capabilities
specified in INTERFACE with identical signatures (same argument names
and declared types).

Note that models declared for the implemented
interface and its members will be appended to whatever models are
declared within the implementing module.

A module thus specified can be used as a module reference
for the specified interface(s).

Expressions

Expressions may be literals, atoms, s-expressions, or
references.

Atoms

Atoms are non-reserved barewords starting with a letter or allowed
symbol, and containing letters, digits and allowed symbols. Allowed
symbols are %#+-_&$@<>=?*!|/. Atoms must resolve to a variable bound
by a defun, defpact, binding
form, lambda form, or to symbols imported into the
namespace with use.

S-expressions

S-expressions are formed with parentheses, with the first atom
determining if the expression is a special form or
a function application, in which case the first atom must refer to a
definition.

Partial application

An application with less than the required arguments is in some contexts
a valid partial application of the function. However, this is only
supported in Pact’s functional-style functions; anywhere else
this will result in a runtime error.

References

References are multiple atoms joined by a dot . that directly
resolve to definitions found in other modules.

pact> accounts.transfer
"(defun accounts.transfer (src,dest,amount,date) \"transfer AMOUNT from
SRC to DEST\")"
pact> transfer
Eval failure:
transfer<EOF>: Cannot resolve transfer
pact> (use 'accounts)
"Using \"accounts\""
pact> transfer
"(defun accounts.transfer (src,dest,amount,date) \"transfer AMOUNT from
SRC to DEST\")"

References are preferred over use for transactions, as references
resolve faster. However, when defining a module, use is preferred
for legibility.

Time formats

The parse-time and
format-time functions accept
format codes that derive from GNU strftime with some extensions, as
follows:

%% - literal "%"

%z - RFC 822/ISO 8601:1988 style numeric time zone (e.g.,
"-0600" or "+0100")

%N - ISO 8601 style numeric time zone (e.g., "-06:00" or
"+01:00") /EXTENSION/

%Z - timezone name

%c - The preferred calendar time representation for the current
locale. As ‘dateTimeFmt’ locale (e.g. %a %b %e %H:%M:%S %Z %Y)

%R - same as %H:%M

%T - same as %H:%M:%S

%X - The preferred time of day representation for the current
locale. As ‘timeFmt’ locale (e.g. %H:%M:%S)

%r - The complete calendar time using the AM/PM format of the
current locale. As ‘time12Fmt’ locale (e.g. %I:%M:%S %p)

%P - day-half of day from (‘amPm’ locale), converted to
lowercase, "am", "pm"

%p - day-half of day from (‘amPm’ locale), "AM", "PM"

%H - hour of day (24-hour), 0-padded to two chars, "00"–"23"

%k - hour of day (24-hour), space-padded to two chars,
" 0"–"23"

%I - hour of day-half (12-hour), 0-padded to two chars,
"01"–"12"

%l - hour of day-half (12-hour), space-padded to two chars,
" 1"–"12"

%M - minute of hour, 0-padded to two chars, "00"–"59"

%S - second of minute (without decimal part), 0-padded to two chars,
"00"–"60"

%v - microsecond of second, 0-padded to six chars,
"000000"–"999999". /EXTENSION/

%Q - decimal point and fraction of second, up to 6 second decimals,
without trailing zeros. For a whole number of seconds, %Q produces
the empty string. /EXTENSION/

%s - number of whole seconds since the Unix epoch. For times before
the Unix epoch, this is a negative number. Note that in %s.%q and
%s%Q the decimals are positive, not negative. For example, 0.9
seconds before the Unix epoch is formatted as "-1.1" with %s%Q.

%D - same as %m\/%d\/%y

%F - same as %Y-%m-%d

%x - as ‘dateFmt’ locale (e.g. %m\/%d\/%y)

%Y - year, no padding.

%y - year of century, 0-padded to two chars, "00"–"99"

%C - century, no padding.

%B - month name, long form (‘fst’ from ‘months’ locale),
"January"–"December"

%b, %h - month name, short form (‘snd’ from ‘months’
locale), "Jan"–"Dec"

%m - month of year, 0-padded to two chars, "01"–"12"

%d - day of month, 0-padded to two chars, "01"–"31"

%e - day of month, space-padded to two chars, " 1"–"31"

%j - day of year, 0-padded to three chars, "001"–"366"

%G - year for Week Date format, no padding.

%g - year of century for Week Date format, 0-padded to two chars,
"00"–"99"

%f - century for Week Date format, no padding. /EXTENSION/

%V - week of year for Week Date format, 0-padded to two chars,
"01"–"53"

%u - day of week for Week Date format, "1"–"7"

%a - day of week, short form (‘snd’ from ‘wDays’ locale),
"Sun"–"Sat"

%A - day of week, long form (‘fst’ from ‘wDays’ locale),
"Sunday"–"Saturday"

%U - week of year where weeks start on Sunday (as
‘sundayStartWeek’), 0-padded to two chars, "00"–"53"

%w - day of week number, "0" (= Sunday) – "6" (= Saturday)

%W - week of year where weeks start on Monday (as
‘Data.Thyme.Calendar.WeekdayOfMonth.mondayStartWeek’), 0-padded to two
chars, "00"–"53"

Note: %q (picoseconds, zero-padded) does not work properly so not
documented here.

Default format and JSON serialization

The default format is a UTC ISO8601 date+time format:
“%Y-%m-%dT%H:%M:%SZ”, as accepted by the
time function. While the time object
internally supports up to microsecond resolution, values returned from
the Pact interpreter as JSON will be serialized with the default format.
When higher resolution is desired, explicitly format times with %v
and related codes.

Examples

ISO8601

pact> (format-time "%Y-%m-%dT%H:%M:%S%N" (time "2016-07-23T13:30:45Z"))
"2016-07-23T13:30:45+00:00"

RFC822

pact> (format-time "%a, %_d %b %Y %H:%M:%S %Z" (time "2016-07-23T13:30:45Z"))
"Sat, 23 Jul 2016 13:30:45 UTC"

YYYY-MM-DD hh:mm:ss.000000

pact> (format-time "%Y-%m-%d %H:%M:%S.%v" (add-time (time "2016-07-23T13:30:45Z") 0.001002))
"2016-07-23 13:30:45.001002"

Built-in Functions

General

CHARSET_ASCII

Constant denoting the ASCII charset

Constant: CHARSET_ASCII:integer = 0

CHARSET_LATIN1

Constant denoting the Latin-1 charset ISO-8859-1

Constant: CHARSET_LATIN1:integer = 1

at

idx integer list [<l>] → <a>

idx string object object:<{o}> → <a>

Index LIST at IDX, or get value with key IDX from OBJECT.

pact> (at 1 [1 2 3])
2
pact> (at "bar" { "foo": 1, "bar": 2 })
2

base64-decode

string string → string

Decode STRING from unpadded base64

pact> (base64-decode "aGVsbG8gd29ybGQh")
"hello world!"

base64-encode

string string → string

Encode STRING as unpadded base64

pact> (base64-encode "hello world!")
"aGVsbG8gd29ybGQh"

bind

src object:<{row}> binding binding:<{row}> → <a>

Special form evaluates SRC to an object which is bound to with BINDINGS
over subsequent body statements.

pact> (bind { "a": 1, "b": 2 } { "a" := a-value } a-value)
1

chain-data

→ object:{public-chain-data}

Get transaction public metadata. Returns an object with ‘chain-id’,
‘block-height’, ‘block-time’, ‘prev-block-hash’, ‘sender’, ‘gas-limit’,
‘gas-price’, and ‘gas-fee’ fields.

pact> (chain-data)
{"block-height": 0,"block-time": "1970-01-01T00:00:00Z","chain-id": "","gas-limit": 0,"gas-price": 0.0,"prev-block-hash": "","sender": ""}

compose

x x:<a> -> y x: -> <c> value <a> → <c>

Compose X and Y, such that X operates on VALUE, and Y on the results of
X.

pact> (filter (compose (length) (< 2)) ["my" "dog" "has" "fleas"])
["dog" "has" "fleas"]

concat

str-list [string] → string

Takes STR-LIST and concats each of the strings in the list, returning
the resulting string

pact> (concat ["k" "d" "a"])
"kda"
pact> (concat (map (+ " ") (str-to-list "abcde")))
" a b c d e"

constantly

value <a> ignore1 → <a>

value <a> ignore1 ignore2 <c> → <a>

value <a> ignore1 ignore2 <c> ignore3 <d>
→ <a>

Lazily ignore arguments IGNORE* and return VALUE.

pact> (filter (constantly true) [1 2 3])
[1 2 3]

contains

value <a> list [<a>] → bool

key <a> object object:<{o}> → bool

value string string string → bool

Test that LIST or STRING contains VALUE, or that OBJECT has KEY entry.

pact> (contains 2 [1 2 3])
true
pact> (contains 'name { 'name: "Ted", 'age: 72 })
true
pact> (contains "foo" "foobar")
true

continue

value * → *

Continue a previously started nested defpact.

(continue (coin.transfer-crosschain "bob" "alice" 10.0))

define-namespace

namespace string user-guard guard admin-guard guard
→ string

Create a namespace called NAMESPACE where ownership and use of the
namespace is controlled by GUARD. If NAMESPACE is already defined, then
the guard previously defined in NAMESPACE will be enforced, and GUARD
will be rotated in its place.

(define-namespace 'my-namespace (read-keyset 'user-ks) (read-keyset 'admin-ks))

Top level only: this function will fail if used in module code.

distinct

values [<a>] → [<a>]

Returns from a homogeneous list of VALUES a list with duplicates
removed. The original order of the values is preserved.

pact> (distinct [3 3 1 1 2 2])
[3 1 2]

drop

count integer list <a[[<l>],string]>
→ <a[[<l>],string]>

keys [string] object object:<{o}> → object:<{o}>

Drop COUNT values from LIST (or string), or entries having keys in KEYS
from OBJECT. If COUNT is negative, drop from end. If COUNT exceeds the
interval (-263,263), it is truncated to that range.

pact> (drop 2 "vwxyz")
"xyz"
pact> (drop (- 2) [1 2 3 4 5])
[1 2 3]
pact> (drop ['name] { 'name: "Vlad", 'active: false})
{"active": false}

enforce

test bool msg string → bool

Fail transaction with MSG if pure expression TEST is false. Otherwise,
returns true.

pact> (enforce (!= (+ 2 2) 4) "Chaos reigns")
<interactive>:0:0: Chaos reigns

enforce-one

msg string tests [bool] → bool

Run TESTS in order (in pure context, plus keyset enforces). If all fail,
fail transaction. Short-circuits on first success.

pact> (enforce-one "Should succeed on second test" [(enforce false "Skip me") (enforce (= (+ 2 2) 4) "Chaos reigns")])
true

enforce-pact-version

min-version string → bool

min-version string max-version string → bool

Enforce runtime pact version as greater than or equal MIN-VERSION, and
less than or equal MAX-VERSION. Version values are matched numerically
from the left, such that ‘2’, ‘2.2’, and ‘2.2.3’ would all allow
‘2.2.3’.

pact> (enforce-pact-version "2.3")
true

Top level only: this function will fail if used in module code.

enumerate

from integer to integer inc integer → [integer]

from integer to integer → [integer]

Returns a sequence of numbers from FROM to TO (both inclusive) as a
list. INC is the increment between numbers in the sequence. If INC is
not given, it is assumed to be 1. Additionally, if INC is not given and
FROM is greater than TO assume a value for INC of -1. If FROM equals TO,
return the singleton list containing FROM, irrespective of INC’s value.
If INC is equal to zero, this function will return the singleton list
containing FROM. If INC is such that FROM + INC > TO (when FROM < TO) or
FROM + INC < TO (when FROM > TO) return the singleton list containing
FROM. Lastly, if INC is such that FROM + INC < TO (when FROM < TO) or
FROM + INC > TO (when FROM > TO), then this function fails.

pact> (enumerate 0 10 2)
[0 2 4 6 8 10]
pact> (enumerate 0 10)
[0 1 2 3 4 5 6 7 8 9 10]
pact> (enumerate 10 0)
[10 9 8 7 6 5 4 3 2 1 0]

filter

app x:<a> -> bool list [<a>] → [<a>]

Filter LIST by applying APP to each element. For each true result, the
original value is kept.

pact> (filter (compose (length) (< 2)) ["my" "dog" "has" "fleas"])
["dog" "has" "fleas"]

fold

app x:<a> y: -> <a> init <a> list [] → <a>

Iteratively reduce LIST by applying APP to last result and element,
starting with INIT.

pact> (fold (+) 0 [100 10 5])
115

format

template string vars [*] → string

Interpolate VARS into TEMPLATE using {}.

pact> (format "My {} has {}" ["dog" "fleas"])
"My dog has fleas"

hash

value <a> → string

Compute BLAKE2b 256-bit hash of VALUE represented in unpadded
base64-url. Strings are converted directly while other values are
converted using their JSON representation. Non-value-level arguments are
not allowed.

pact> (hash "hello")
"Mk3PAn3UowqTLEQfNlol6GsXPe-kuOWJSCU0cbgbcs8"
pact> (hash { 'foo: 1 })
"h9BZgylRf_M4HxcBXr15IcSXXXSz74ZC2IAViGle_z4"

identity

value <a> → <a>

Return provided value.

pact> (map (identity) [1 2 3])
[1 2 3]

if

cond bool then <a> else <a> → <a>

Test COND. If true, evaluate THEN. Otherwise, evaluate ELSE.

pact> (if (= (+ 2 2) 4) "Sanity prevails" "Chaos reigns")
"Sanity prevails"

int-to-str

base integer val integer → string

Represent integer VAL as a string in BASE. BASE can be 2-16, or 64 for
unpadded base64URL. Only positive values are allowed for base64URL
conversion.

pact> (int-to-str 16 65535)
"ffff"
pact> (int-to-str 64 43981)
"q80"

is-charset

charset integer input string → bool

Check that a string INPUT conforms to the a supported character set
CHARSET. Character sets currently supported are: ‘CHARSET_LATIN1’
(ISO-8859-1), and ‘CHARSET_ASCII’ (ASCII). Support for sets up through
ISO 8859-5 supplement will be added in the future.

pact> (is-charset CHARSET_ASCII "hello world")
true
pact> (is-charset CHARSET_ASCII "I am nÖt ascii")
false
pact> (is-charset CHARSET_LATIN1 "I am nÖt ascii, but I am latin1!")
true

length

x <a[[<l>],string,object:<{o}>]> → integer

Compute length of X, which can be a list, a string, or an object.

pact> (length [1 2 3])
3
pact> (length "abcdefgh")
8
pact> (length { "a": 1, "b": 2 })
2

list

elems * → [*]

Create list from ELEMS. Deprecated in Pact 2.1.1 with literal list
support.

pact> (list 1 2 3)
[1 2 3]

list-modules

→ [string]

List modules available for loading.

Top level only: this function will fail if used in module code.

make-list

length integer value <a> → [<a>]

Create list by repeating VALUE LENGTH times.

pact> (make-list 5 true)
[true true true true true]

map

app x: -> <a> list [] → [<a>]

Apply APP to each element in LIST, returning a new list of results.

pact> (map (+ 1) [1 2 3])
[2 3 4]

namespace

namespace string → string

Set the current namespace to NAMESPACE. All expressions that occur in a
current transaction will be contained in NAMESPACE, and once committed,
may be accessed via their fully qualified name, which will include the
namespace. Subsequent namespace calls in the same tx will set a new
namespace for all declarations until either the next namespace
declaration, or the end of the tx.

(namespace 'my-namespace)

Top level only: this function will fail if used in module code.

pact-id

→ string

Return ID if called during current pact execution, failing if not.

pact-version

→ string

Obtain current pact build version.

pact> (pact-version)
"4.3"

Top level only: this function will fail if used in module code.

public-chain-data

Schema type for data returned from ‘chain-data’.

Fields: chain-id:string block-height:integer
 block-time:time prev-block-hash:string sender:string
 gas-limit:integer gas-price:decimal

read-decimal

key string → decimal

Parse KEY string or number value from top level of message data body as
decimal.

(defun exec ()
 (transfer (read-msg "from") (read-msg "to") (read-decimal "amount")))

read-integer

key string → integer

Parse KEY string or number value from top level of message data body as
integer.

(read-integer "age")

read-msg

→ <a>

key string → <a>

Read KEY from top level of message data body, or data body itself if not
provided. Coerces value to their corresponding pact type: String ->
string, Number -> integer, Boolean -> bool, List -> list, Object ->
object.

(defun exec ()
 (transfer (read-msg "from") (read-msg "to") (read-decimal "amount")))

read-string

key string → string

Parse KEY string or number value from top level of message data body as
string.

(read-string "sender")

remove

key string object object:<{o}> → object:<{o}>

Remove entry for KEY from OBJECT.

pact> (remove "bar" { "foo": 1, "bar": 2 })
{"foo": 1}

resume

binding binding:<{r}> → <a>

Special form binds to a yielded object value from the prior step
execution in a pact. If yield step was executed on a foreign chain,
enforce endorsement via SPV.

reverse

list [<a>] → [<a>]

Reverse LIST.

pact> (reverse [1 2 3])
[3 2 1]

sort

values [<a>] → [<a>]

fields [string] values [object:<{o}>] → [object:<{o}>]

Sort a homogeneous list of primitive VALUES, or objects using supplied
FIELDS list.

pact> (sort [3 1 2])
[1 2 3]
pact> (sort ['age] [{'name: "Lin",'age: 30} {'name: "Val",'age: 25}])
[{"name": "Val","age": 25} {"name": "Lin","age": 30}]

str-to-int

str-val string → integer

base integer str-val string → integer

Compute the integer value of STR-VAL in base 10, or in BASE if
specified. STR-VAL can be up to 512 chars in length. BASE must be
between 2 and 16, or 64 to perform unpadded base64url conversion. Each
digit must be in the correct range for the base.

pact> (str-to-int 16 "abcdef123456")
188900967593046
pact> (str-to-int "123456")
123456
pact> (str-to-int 64 "q80")
43981

str-to-list

str string → [string]

Takes STR and returns a list of single character strings

pact> (str-to-list "hello")
["h" "e" "l" "l" "o"]
pact> (concat (map (+ " ") (str-to-list "abcde")))
" a b c d e"

take

count integer list <a[[<l>],string]>
→ <a[[<l>],string]>

keys [string] object object:<{o}> → object:<{o}>

Take COUNT values from LIST (or string), or entries having keys in KEYS
from OBJECT. If COUNT is negative, take from end. If COUNT exceeds the
interval (-263,263), it is truncated to that range.

pact> (take 2 "abcd")
"ab"
pact> (take (- 3) [1 2 3 4 5])
[3 4 5]
pact> (take ['name] { 'name: "Vlad", 'active: false})
{"name": "Vlad"}

try

default <a> action <a> → <a>

Attempt a pure ACTION, returning DEFAULT in the case of failure. Pure
expressions are expressions which do not do i/o or work with
non-deterministic state in contrast to impure expressions such as
reading and writing to a table.

pact> (try 3 (enforce (= 1 2) "this will definitely fail"))
3
(expect "impure expression fails and returns default" "default" (try "default" (with-read accounts id {'ccy := ccy}) ccy))

tx-hash

→ string

Obtain hash of current transaction as a string.

pact> (tx-hash)
"DldRwCblQ7Loqy6wYJnaodHl30d3j3eH-qtFzfEv46g"

typeof

x <a> → string

Returns type of X as string.

pact> (typeof "hello")
"string"

where

field string app x:<a> -> bool value object:<{row}>
→ bool

Utility for use in ‘filter’ and ‘select’ applying APP to FIELD in VALUE.

pact> (filter (where 'age (> 20)) [{'name: "Mary",'age: 30} {'name: "Juan",'age: 15}])
[{"name": "Juan","age": 15}]

yield

object object:<{y}> → object:<{y}>

object object:<{y}> target-chain string → object:<{y}>

Yield OBJECT for use with ‘resume’ in following pact step. With optional
argument TARGET-CHAIN, target subsequent step to execute on targeted
chain using automated SPV endorsement-based dispatch.

(yield { "amount": 100.0 })
(yield { "amount": 100.0 } "some-chain-id")

zip

f x:<a> y: -> <c> list1 [<a>] list2 []
→ [<c>]

Combine two lists with some function f, into a new list, the length of
which is the length of the shortest list.

pact> (zip (+) [1 2 3 4] [4 5 6 7])
[5 7 9 11]
pact> (zip (-) [1 2 3 4] [4 5 6])
[-3 -3 -3]
pact> (zip (+) [1 2 3] [4 5 6 7])
[5 7 9]
pact> (zip (lambda (x y) { 'x: x, 'y: y }) [1 2 3 4] [4 5 6 7])
[{"x": 1,"y": 4} {"x": 2,"y": 5} {"x": 3,"y": 6} {"x": 4,"y": 7}]

Database

create-table

table table:<{row}> → string

Create table TABLE.

(create-table accounts)

Top level only: this function will fail if used in module code.

describe-keyset

keyset string → object:*

Get metadata for KEYSET.

Top level only: this function will fail if used in module code.

describe-module

module string → object:*

Get metadata for MODULE. Returns an object with ‘name’, ‘hash’,
‘blessed’, ‘code’, and ‘keyset’ fields.

(describe-module 'my-module)

Top level only: this function will fail if used in module code.

describe-table

table table:<{row}> → object:*

Get metadata for TABLE. Returns an object with ‘name’, ‘hash’,
‘blessed’, ‘code’, and ‘keyset’ fields.

(describe-table accounts)

Top level only: this function will fail if used in module code.

fold-db

table table:<{row}> qry a:string b:object:<{row}> -> bool
consumer a:string b:object:<{row}> -> → []

Select rows from TABLE using QRY as a predicate with both key and value,
and then accumulate results of the query in CONSUMER. Output is sorted
by the ordering of keys.

(let*
 ((qry (lambda (k obj) true)) ;; select all rows
 (f (lambda (x) [(at 'firstName x), (at 'b x)]))
)
 (fold-db people (qry) (f))
)

insert

table table:<{row}> key string object object:<{row}>
→ string

Write entry in TABLE for KEY of OBJECT column data, failing if data
already exists for KEY.

(insert accounts id { "balance": 0.0, "note": "Created account." })

keylog

table table:<{row}> key string txid integer
→ [object:*]

Return updates to TABLE for a KEY in transactions at or after TXID, in a
list of objects indexed by txid.

(keylog accounts "Alice" 123485945)

keys

table table:<{row}> → [string]

Return all keys in TABLE.

(keys accounts)

read

table table:<{row}> key string → object:<{row}>

table table:<{row}> key string columns [string]
→ object:<{row}>

Read row from TABLE for KEY, returning database record object, or just
COLUMNS if specified.

(read accounts id ['balance 'ccy])

select

table table:<{row}> where row:object:<{row}> -> bool
→ [object:<{row}>]

table table:<{row}> columns [string]
where row:object:<{row}> -> bool → [object:<{row}>]

Select full rows or COLUMNS from table by applying WHERE to each row to
get a boolean determining inclusion.

(select people ['firstName,'lastName] (where 'name (= "Fatima")))
(select people (where 'age (> 30)))?

txids

table table:<{row}> txid integer → [integer]

Return all txid values greater than or equal to TXID in TABLE.

(txids accounts 123849535)

txlog

table table:<{row}> txid integer → [object:*]

Return all updates to TABLE performed in transaction TXID.

(txlog accounts 123485945)

update

table table:<{row}> key string object object:~<{row}>
→ string

Write entry in TABLE for KEY of OBJECT column data, failing if data does
not exist for KEY.

(update accounts id { "balance": (+ bal amount), "change": amount, "note": "credit" })

with-default-read

table table:<{row}> key string
defaults object:~<{row}> bindings binding:~<{row}>
→ <a>

Special form to read row from TABLE for KEY and bind columns per
BINDINGS over subsequent body statements. If row not found, read columns
from DEFAULTS, an object with matching key names.

(with-default-read accounts id { "balance": 0, "ccy": "USD" } { "balance":= bal, "ccy":= ccy }
 (format "Balance for {} is {} {}" [id bal ccy]))

with-read

table table:<{row}> key string
bindings binding:<{row}> → <a>

Special form to read row from TABLE for KEY and bind columns per
BINDINGS over subsequent body statements.

(with-read accounts id { "balance":= bal, "ccy":= ccy }
 (format "Balance for {} is {} {}" [id bal ccy]))

write

table table:<{row}> key string object object:<{row}>
→ string

Write entry in TABLE for KEY of OBJECT column data.

(write accounts id { "balance": 100.0 })

Time

add-time

time time seconds decimal → time

time time seconds integer → time

Add SECONDS to TIME; SECONDS can be integer or decimal.

pact> (add-time (time "2016-07-22T12:00:00Z") 15)
"2016-07-22T12:00:15Z"

days

n decimal → decimal

n integer → decimal

N days, for use with ‘add-time’

pact> (add-time (time "2016-07-22T12:00:00Z") (days 1))
"2016-07-23T12:00:00Z"

diff-time

time1 time time2 time → decimal

Compute difference between TIME1 and TIME2 in seconds.

pact> (diff-time (parse-time "%T" "16:00:00") (parse-time "%T" "09:30:00"))
23400.0

format-time

format string time time → string

Format TIME using FORMAT. See “Time Formats”
docs for supported formats.

pact> (format-time "%F" (time "2016-07-22T12:00:00Z"))
"2016-07-22"

hours

n decimal → decimal

n integer → decimal

N hours, for use with ‘add-time’

pact> (add-time (time "2016-07-22T12:00:00Z") (hours 1))
"2016-07-22T13:00:00Z"

minutes

n decimal → decimal

n integer → decimal

N minutes, for use with ‘add-time’.

pact> (add-time (time "2016-07-22T12:00:00Z") (minutes 1))
"2016-07-22T12:01:00Z"

parse-time

format string utcval string → time

Construct time from UTCVAL using FORMAT. See “Time Formats”
docs for supported formats.

pact> (parse-time "%F" "2016-09-12")
"2016-09-12T00:00:00Z"

time

utcval string → time

Construct time from UTCVAL using ISO8601 format (%Y-%m-%dT%H:%M:%SZ).

pact> (time "2016-07-22T11:26:35Z")
"2016-07-22T11:26:35Z"

Operators

!=

x <a[integer,string,time,decimal,bool,[<l>],object:<{o}>,keyset,guard,module{}]>
y <a[integer,string,time,decimal,bool,[<l>],object:<{o}>,keyset,guard,module{}]>
→ bool

True if X does not equal Y.

pact> (!= "hello" "goodbye")
true

& {#&}

x integer y integer → integer

Compute bitwise X and Y.

pact> (& 2 3)
2
pact> (& 5 -7)
1

*

x <a[integer,decimal]> y <a[integer,decimal]>
→ <a[integer,decimal]>

x <a[integer,decimal]> y <b[integer,decimal]>
→ decimal

Multiply X by Y.

pact> (* 0.5 10.0)
5.0
pact> (* 3 5)
15

+

x <a[integer,decimal]> y <a[integer,decimal]>
→ <a[integer,decimal]>

x <a[integer,decimal]> y <b[integer,decimal]>
→ decimal

x <a[string,[<l>],object:<{o}>]>
y <a[string,[<l>],object:<{o}>]>
→ <a[string,[<l>],object:<{o}>]>

Add numbers, concatenate strings/lists, or merge objects.

pact> (+ 1 2)
3
pact> (+ 5.0 0.5)
5.5
pact> (+ "every" "body")
"everybody"
pact> (+ [1 2] [3 4])
[1 2 3 4]
pact> (+ { "foo": 100 } { "foo": 1, "bar": 2 })
{"bar": 2,"foo": 100}

-

x <a[integer,decimal]> y <a[integer,decimal]>
→ <a[integer,decimal]>

x <a[integer,decimal]> y <b[integer,decimal]>
→ decimal

x <a[integer,decimal]> → <a[integer,decimal]>

Negate X, or subtract Y from X.

pact> (- 1.0)
-1.0
pact> (- 3 2)
1

/

x <a[integer,decimal]> y <a[integer,decimal]>
→ <a[integer,decimal]>

x <a[integer,decimal]> y <b[integer,decimal]>
→ decimal

Divide X by Y.

pact> (/ 10.0 2.0)
5.0
pact> (/ 8 3)
2

<

x <a[integer,decimal,string,time]>
y <a[integer,decimal,string,time]> → bool

True if X < Y.

pact> (< 1 3)
true
pact> (< 5.24 2.52)
false
pact> (< "abc" "def")
true

<=

x <a[integer,decimal,string,time]>
y <a[integer,decimal,string,time]> → bool

True if X <= Y.

pact> (<= 1 3)
true
pact> (<= 5.24 2.52)
false
pact> (<= "abc" "def")
true

=

x <a[integer,string,time,decimal,bool,[<l>],object:<{o}>,keyset,guard,module{}]>
y <a[integer,string,time,decimal,bool,[<l>],object:<{o}>,keyset,guard,module{}]>
→ bool

Compare alike terms for equality, returning TRUE if X is equal to Y.
Equality comparisons will fail immediately on type mismatch, or if types
are not value types.

pact> (= [1 2 3] [1 2 3])
true
pact> (= 'foo "foo")
true
pact> (= { 'a: 2 } { 'a: 2})
true

>

x <a[integer,decimal,string,time]>
y <a[integer,decimal,string,time]> → bool

True if X > Y.

pact> (> 1 3)
false
pact> (> 5.24 2.52)
true
pact> (> "abc" "def")
false

>=

x <a[integer,decimal,string,time]>
y <a[integer,decimal,string,time]> → bool

True if X >= Y.

pact> (>= 1 3)
false
pact> (>= 5.24 2.52)
true
pact> (>= "abc" "def")
false

^

x <a[integer,decimal]> y <a[integer,decimal]>
→ <a[integer,decimal]>

x <a[integer,decimal]> y <b[integer,decimal]>
→ decimal

Raise X to Y power.

pact> (^ 2 3)
8

abs

x decimal → decimal

x integer → integer

Absolute value of X.

pact> (abs (- 10 23))
13

and

x bool y bool → bool

Boolean logic with short-circuit.

pact> (and true false)
false

and? {#and?}

a x:<r> -> bool b x:<r> -> bool value <r> → bool

Apply logical ‘and’ to the results of applying VALUE to A and B, with
short-circuit.

pact> (and? (> 20) (> 10) 15)
false

ceiling

x decimal prec integer → decimal

x decimal → integer

Rounds up value of decimal X as integer, or to PREC precision as
decimal.

pact> (ceiling 3.5)
4
pact> (ceiling 100.15234 2)
100.16

exp

x <a[integer,decimal]> → <a[integer,decimal]>

Exp of X.

pact> (round (exp 3) 6)
20.085537

floor

x decimal prec integer → decimal

x decimal → integer

Rounds down value of decimal X as integer, or to PREC precision as
decimal.

pact> (floor 3.5)
3
pact> (floor 100.15234 2)
100.15

ln

x <a[integer,decimal]> → <a[integer,decimal]>

Natural log of X.

pact> (round (ln 60) 6)
4.094345

log

x <a[integer,decimal]> y <a[integer,decimal]>
→ <a[integer,decimal]>

x <a[integer,decimal]> y <b[integer,decimal]>
→ decimal

Log of Y base X.

pact> (log 2 256)
8

mod

x integer y integer → integer

X modulo Y.

pact> (mod 13 8)
5

not

x bool → bool

Boolean not.

pact> (not (> 1 2))
true

not? {#not?}

app x:<r> -> bool value <r> → bool

Apply logical ‘not’ to the results of applying VALUE to APP.

pact> (not? (> 20) 15)
false

or

x bool y bool → bool

Boolean logic with short-circuit.

pact> (or true false)
true

or? {#or?}

a x:<r> -> bool b x:<r> -> bool value <r> → bool

Apply logical ‘or’ to the results of applying VALUE to A and B, with
short-circuit.

pact> (or? (> 20) (> 10) 15)
true

round

x decimal prec integer → decimal

x decimal → integer

Performs Banker’s rounding value of decimal X as integer, or to PREC
precision as decimal.

pact> (round 3.5)
4
pact> (round 100.15234 2)
100.15

shift

x integer y integer → integer

Shift X Y bits left if Y is positive, or right by -Y bits otherwise.
Right shifts perform sign extension on signed number types; i.e. they
fill the top bits with 1 if the x is negative and with 0 otherwise.

pact> (shift 255 8)
65280
pact> (shift 255 -1)
127
pact> (shift -255 8)
-65280
pact> (shift -255 -1)
-128

sqrt

x <a[integer,decimal]> → <a[integer,decimal]>

Square root of X.

pact> (sqrt 25)
5.0

xor

x integer y integer → integer

Compute bitwise X xor Y.

pact> (xor 127 64)
63
pact> (xor 5 -7)
-4

| {#|}

x integer y integer → integer

Compute bitwise X or Y.

pact> (| 2 3)
3
pact> (| 5 -7)
-3

~ {#~}

x integer → integer

Reverse all bits in X.

pact> (~ 15)
-16

Keysets

define-keyset

name string keyset string → string

name string → string

Define keyset as NAME with KEYSET, or if unspecified, read NAME from
message payload as keyset, similarly to ‘read-keyset’. If keyset NAME
already exists, keyset will be enforced before updating to new value.

(define-keyset 'admin-keyset (read-keyset "keyset"))

Top level only: this function will fail if used in module code.

enforce-keyset

guard guard → bool

keysetname string → bool

Execute GUARD, or defined keyset KEYSETNAME, to enforce desired
predicate logic.

(enforce-keyset 'admin-keyset)
(enforce-keyset row-guard)

keys-2

count integer matched integer → bool

Keyset predicate function to match at least 2 keys in keyset.

pact> (keys-2 3 1)
false

keys-all

count integer matched integer → bool

Keyset predicate function to match all keys in keyset.

pact> (keys-all 3 3)
true

keys-any

count integer matched integer → bool

Keyset predicate function to match any (at least 1) key in keyset.

pact> (keys-any 10 1)
true

read-keyset

key string → keyset

Read KEY from message data body as keyset ({ “keys”: KEYLIST, “pred”:
PREDFUN }). PREDFUN should resolve to a keys predicate.

(read-keyset "admin-keyset")

Capabilities

compose-capability

capability -> bool → bool

Specifies and requests grant of CAPABILITY which is an application of a
‘defcap’ production, only valid within a (distinct) ‘defcap’ body, as a
way to compose CAPABILITY with the outer capability such that the scope
of the containing ‘with-capability’ call will “import” this capability.
Thus, a call to ‘(with-capability (OUTER-CAP) OUTER-BODY)’, where the
OUTER-CAP defcap calls ‘(compose-capability (INNER-CAP))’, will result
in INNER-CAP being granted in the scope of OUTER-BODY.

(compose-capability (TRANSFER src dest))

create-module-guard

name string → guard

Defines a guard by NAME that enforces the current module admin
predicate.

create-pact-guard

name string → guard

Defines a guard predicate by NAME that captures the results of
‘pact-id’. At enforcement time, the success condition is that at that
time ‘pact-id’ must return the same value. In effect this ensures that
the guard will only succeed within the multi-transaction identified by
the pact id.

create-principal

guard guard → string

Create a principal which unambiguously identifies GUARD.

(create-principal (read-keyset 'keyset))
(create-principal (keyset-ref-guard 'keyset))
(create-principal (create-module-guard 'module-guard))
(create-principal (create-user-guard 'user-guard))
(create-principal (create-pact-guard 'pact-guard))

create-user-guard

closure -> bool → guard

Defines a custom guard CLOSURE whose arguments are strictly evaluated at
definition time, to be supplied to indicated function at enforcement
time.

emit-event

capability -> bool → bool

Emit CAPABILITY as event without evaluating body of capability. Fails if
CAPABILITY is not @managed or @event.

(emit-event (TRANSFER "Bob" "Alice" 12.0))

enforce-guard

guard guard → bool

keysetname string → bool

Execute GUARD, or defined keyset KEYSETNAME, to enforce desired
predicate logic.

(enforce-guard 'admin-keyset)
(enforce-guard row-guard)

install-capability

capability -> bool → string

Specifies, and provisions install of, a managed CAPABILITY, defined in
a ‘defcap’ in which a ‘@managed’ tag designates a single parameter to be
managed by a specified function. After install, CAPABILITY must still be
brought into scope using ‘with-capability’, at which time the ‘manager
function’ is invoked to validate the request. The manager function is of
type ’managed:

requested:

->

‘, where’

’ indicates the type of the managed parameter, such that for ‘(defcap
FOO (bar:string baz:integer) @managed baz FOO-mgr …)’, the manager
function would be ‘(defun FOO-mgr:integer (managed:integer
requested:integer) …)’. Any capability matching the ‘static’
(non-managed) parameters will cause this function to be invoked with the
current managed value and that of the requested capability. The function
should perform whatever logic, presumably linear, to validate the
request, and return the new managed value representing the ‘balance’ of
the request. NOTE that signatures scoped to a managed capability cause
the capability to be automatically provisioned for install similarly to
one installed with this function.

(install-capability (PAY "alice" "bob" 10.0))

 The Pact Property Checking System

 [image: _images/kadena-logo-210px.png]

The Pact Property Checking System

What is it?

Pact comes equipped with the ability for smart contract authors to
express and automatically check properties – or, specifications – of
Pact programs.

The Pact property checking system is our response to the current
environment of chaos and uncertainty in the smart contract programming
world. Instead of requiring error-prone smart contract authors to try to
imagine all possible ways an attacker could exploit their smart
contract, we can allow them to prove their code can’t be attacked, all
without requiring a background in formal verification.

For example, for an arbitrarily complex Pact program, we might want to
definitively prove that the program only allows “administrators” of the
contract to modify the database – for all other users, we’re guaranteed
that the contract’s logic permits read-only access to the DB. We can
prove such a property statically, before any code is deployed to the
blockchain.

Compared with conventional unit testing, wherein the behavior of a
program is validated for a single combination of inputs and the author
hopes this case generalizes to all inputs, the Pact property checking
system automatically checks the code against all possible inputs, and
therefore all possible execution paths.

Pact does this by allowing authors to specify schema invariants about
columns in database tables, and to state and prove properties about
functions with respect to the function’s arguments and return values,
keyset enforcement, database access, and use of enforce.

For those familiar, the Pact’s properties correspond to the notion of
“contracts” (note: this is different than “smart contracts”), and Pact’s
invariants correspond to a simplified initial step towards refinement
types, from the world of formal verification.

For this initial release we don’t yet support 100% of the Pact language,
and the implementation of the property checker itself has not yet been
formally verified, but this is only the first step. We’re excited to
continue broadening support for every possible Pact program, eventually
prove correctness of the property checker, and continually enable
authors to express ever more sophisticated properties about their smart
contracts over time.

What do properties and schema invariants look like?

Here’s an example of Pact’s properties in action – we declare a property
alongside the docstring of the function to which it corresponds. Note
that the function delegates its implementation of keyset enforcement to
another function, enforce-admin, and we don’t need to be concerned
about its internal details. Our property states that if the transaction
submitted to the blockchain runs successfully, it must be the case that
the transaction has the proper signatures to satisfy the keyset named
admins:

(defun read-account (id)
 @doc "Read data for account ID"
 @model [(property (authorized-by 'admins))]

 (enforce-admin)
 (read 'accounts id ['balance 'ccy 'amount]))

There’s a set of square brackets around our property because Pact allows
multiple properties to be defined simultaneously:

[p1 p2 p3 ...]

Next, we see an example of schema invariants. For any table with the
following schema, if our property checker succeeds, we know that all
possible code paths will always maintain the invariant that token
balances are greater than zero:

(defschema tokens
 @doc "token schema"
 @model [(invariant (> balance 0))]

 username:string
 balance:integer)

How does it work?

Pact’s property checker works by realizing the language’s semantics in
an SMT (“Satisfiability Modulo Theories”) solver – by building a formula
for a program, and testing the validity of that formula. The SMT solver
can prove that there is no possible assignment of values to variables
which can falsify a provided proposition about some Pact code. Pact
currently uses Microsoft’s Z3 theorem
prover [https://github.com/Z3Prover/z3/wiki] to power its property
checking system.

Such a formula is built from the combination of the functions in a Pact
module, the properties provided for those functions, and invariants
declared on schemas in the module.

For any function definition in a Pact module, any subsequent call to
another function is inlined. Before any properties are tested, this
inlined code must pass typechecking.

For schema invariants, the property checker takes an inductive approach:
it assumes that the schema invariants hold for the data currently in
the database, and checks that all functions in the module maintain
those invariants for any possible DB modification.

How do you use it?

After supplying any desired invariant and property annotations in your
module, property checking is run by invoking verify:

(verify 'module-name)

This will typecheck the code and, if that succeeds, check all invariants
and properties.

Expressing properties

Arguments, return values, and standard arithmetic and comparison operators

In properties, we can refer to function arguments directly by their
names, and return values can be referred to by the name result:

(defun negate:integer (x:integer)
 @doc "negate a number"
 @model [(property (= result (* -1 x)))]

 (* x -1))

Here you can also see that the standard arithmetic operators on integers
and decimals work as they do in normal Pact code.

We can also define properties in terms of the standard comparison
operators:

(defun abs:integer (x:integer)
 @doc "absolute value"
 @model [(property (>= result 0))]

 (if (< x 0)
 (negate x)
 x))

Boolean operators

In addition to the standard boolean operators and, or, and
not, Pact’s property checking language supports logical implication
in the form of when, where (when x y) is equivalent to
(or (not x) y). Here we define three properties at once:

(defun negate:integer (x:integer)
 @doc "negate a number"
 @model
 [(property (when (< x 0) (> result 0)))
 (property (when (> x 0) (< result 0)))
 (property (and
 (when (< x 0) (> result 0))
 (when (> x 0) (< result 0))))]

 (* x -1))

Transaction abort and success

By default, every property is predicated on the successful completion of
the transaction which would contain an invocation of the function being
tested. This means that properties like the following:

(defun ensured-positive:integer (val:integer)
 @doc "halts when passed a non-positive number"
 @model [(property (!= result 0))]

 (enforce (> val 0) "val is not positive")
 val)

will pass due to the use of enforce.

At run-time on the blockchain, if an enforce call fails, the
containing transaction is aborted. Because properties are only
concerned with transactions that succeed, the necessary conditions to
pass each enforce call are assumed.

However, in some cases it’s useful to assert when the function must
succeed or abort. To write this kind of assertion, instead of
property, you can use succeeds-when or fails-when, for
example:

(defun ensured-positive:bool (val:integer)
 @model [
 ; this succeeds exactly when val > 0, and fails exactly when val <= 0
 (succeeds-when (> val 0))
 (fails-when (<= val 0))

 ; however, it's valid to assert something weaker
 (succeeds-when (> val 1000))
 (fails-when (< val -1000))
]
 (enforce (> val 0)))

With this model, we’re guaranteed that no transaction will ever run on
the blockchain with a non-positive val.

We’ve now seen all three valid forms of model assertions – property,
succeeds-when, and fails-when.

More comprehensive properties API documentation

For the full listing of functionality available in properties, see the
API documentation at Property and Invariant
Functions [http://pact-language.readthedocs.io/en/latest/pact-properties-api.html].

Expressing schema invariants

Schema invariants are described by a more restricted subset of the
functionality available in property definitions – effectively the
functions which are not concerned with authorization, DB access,
transaction success/failure, and function arguments and return values.
See the API documentation at Property and Invariant
Functions [http://pact-language.readthedocs.io/en/latest/pact-properties-api.html]
for the full listing of functions available in invariant definitions.

Keyset Authorization

In Pact, keys can be referred to by predefined names (defined by
define-keyset) or passed around as values. The property checking
system supports both styles of working with keysets.

For named keysets, the property authorized-by holds only if every
possible code path enforces the keyset:

(defun admins-only (action:string)
 @doc "Only admins or super-admins can call this function successfully.
 @model
 [(property (or (authorized-by 'admins) (authorized-by 'super-admins)))
 (property (when (== "create" action) (authorized-by 'super-admins)))]

 (if (= action "create")
 (create)
 (if (= action "update")
 (update)
 (incorrect-action action))))

For the common pattern of row-level keyset enforcement, wherein a table
might contain a row for each user, and each user’s row contains a keyset
that is authorized when the row is modified, we can ensure this pattern
has been implemented correctly by using the row-enforced property.

For the following property to pass, the code must extract the keyset
stored in the ks column in the accounts table for the row keyed
by the variable name, and enforce it using enforce-keyset:

(row-enforced accounts 'ks name)

For some examples of row-enforced in action, see “A simple balance
transfer example” and the section on “universal and existential
quantification” below.

Database access

To describe database table access, the property language has the
following properties:

	(table-written accounts) - that any cell of the table
accounts is written

	(table-read accounts) - that any cell of the table accounts
is read

	(row-written accounts k) - that the row keyed by the variable
k is written

	(row-read accounts k) - that the row keyed by the variable k
is read

For more details, see an example in “universal and existential
quantification” below.

Mass conservation and column deltas

In some situations, it’s desirable that the total sum of the values in a
column remains the same before and after a transaction. Or to put it
another way, that the sum of all updates to a column zeroes-out by the
end of a transaction. To capture this pattern, we can express a “mass
conservation” property using column-delta:

(= (column-delta accounts 'balance) 0.0)

This property asserts that the “column delta” is zero, where
column-delta returns a numeric value of the sum of all changes to
the column during the transaction.

For an example using this property, see “A simple balance transfer
example” below.

We can also use column-delta to ensure that a column only ever
increases during a transaction:

(>= 0 (column-delta accounts 'balance))

or that it increases by a set amount during a transaction:

(= 1 (column-delta accounts 'balance))

column-delta is defined in terms of the increase of the column from
before to after the transaction (i.e. after - before) – not an
absolute value of change. So here 1 means an increase of 1 to
the column’s total sum.

Universal and existential quantification

In examples like (row-enforced accounts 'ks key) or
(row-written accounts key) above, we’ve so far only referred to
function arguments by the use of the variable named key. But what if
we wanted to talk about all possible rows that will be written, if a
function doesn’t simply update a single row?

In such a situation we could use universal quantification to talk about
any such row:

(property
 (forall (key:string)
 (when (row-written accounts key)
 (row-enforced accounts 'ks key))))

This property says that for any possible row written by the function,
the keyset in column ks must be enforced for that row.

Likewise instead of quantifying over all possible keys, if we wanted to
state that there merely exists a row that is read during the
transaction, we could use existential quantification like so:

(property
 (exists (key:string)
 (row-read accounts key)))

For both universal and existential quantification, note that a type
annotation is required.

Defining and reusing properties

With defproperty, properties can be defined at the module level:

(module accounts 'admin-keyset
 @model
 [(defproperty conserves-mass
 (= (column-delta accounts 'balance) 0.0))
 (defproperty auth-required
 (authorized-by 'accounts-admin-keyset))]

 ; ...
)

and then used at the function level by referring to the property’s name:

(defun read-account (id)
 @model [(property auth-required)]

 ; ...
)

A simple balance transfer example

Let’s work through an example where we write a function to transfer some
amount of a balance across two accounts for the given table:

(defschema account
 @doc "user accounts with balances"

 balance:integer
 ks:keyset)

(deftable accounts:{account})

The following code to transfer a balance between two accounts may look
correct at first study, but it turns out that there are number of bugs
which we can eradicate with the help of another property, and by adding
an invariant to the table.

(defun transfer (from:string to:string amount:integer)
 @doc "Transfer money between accounts"
 @model [(property (row-enforced accounts 'ks from))]

 (with-read accounts from { 'balance := from-bal, 'ks := from-ks }
 (with-read accounts to { 'balance := to-bal }
 (enforce-keyset from-ks)
 (enforce (>= from-bal amount) "Insufficient Funds")
 (update accounts from { "balance": (- from-bal amount) })
 (update accounts to { "balance": (+ to-bal amount) }))))

Let’s start by adding an invariant that balances can never drop below
zero:

(defschema account
 @doc "user accounts with balances"
 @model [(invariant (>= balance 0))]

 balance:integer
 ks:keyset)

Now, when we use verify to check all properties in this module,
Pact’s property checker points out that it’s able to falsify the
positive balance invariant by passing in an amount of -1 (when
the balance is 0). In this case it’s actually possible for the
“sender” to steal money from anyone else by tranferring a negative
amount! Let’s fix that by enforcing (> amount 0), and try again:

(defun transfer (from:string to:string amount:integer)
 @doc "Transfer money between accounts"
 @model [(property (row-enforced accounts 'ks from))]

 (with-read accounts from { 'balance := from-bal, 'ks := from-ks }
 (with-read accounts to { 'balance := to-bal }
 (enforce-keyset from-ks)
 (enforce (>= from-bal amount) "Insufficient Funds")
 (enforce (> amount 0) "Non-positive amount")
 (update accounts from { "balance": (- from-bal amount) })
 (update accounts to { "balance": (+ to-bal amount) }))))

The property checker validates the code at this point, but let’s add
another property conserves-mass to ensure that it’s not possible for
the function to be used to create or destroy any money. We define it
within @model at the module level:

(defproperty conserves-mass
 (= (column-delta accounts 'balance) 0.0))

And then we can use it within @model at the function level:

(defun transfer (from:string to:string amount:integer)
 @doc "Transfer money between accounts"
 @model
 [(property (row-enforced accounts 'ks from))
 (property conserves-mass)]

 (with-read accounts from { 'balance := from-bal, 'ks := from-ks }
 (with-read accounts to { 'balance := to-bal }
 (enforce-keyset from-ks)
 (enforce (>= from-bal amount) "Insufficient Funds")
 (enforce (> amount 0) "Non-positive amount")
 (update accounts from { "balance": (- from-bal amount) })
 (update accounts to { "balance": (+ to-bal amount) }))))

When we run verify this time, the property checker finds a bug again
– it’s able to falsify the property when from and to are set to
the same account. When this is the case, we see that the code actually
creates money out of thin air!

To see how, let’s focus on the two update calls, where from and
to are set to the same value, and from-bal and to-bal are
also set to what we’ll call previous-balance:

(update accounts "alice" { "balance": (- previous-balance amount) })
(update accounts "alice" { "balance": (+ previous-balance amount) })

In this scenario, we can see that the second update call will
completely overwrite the first one, with the value
(+ previous-balance amount). Alice has effectively created
amount tokens for free!

We can fix this by adding another enforce (with (!= from to)) to
prevent this unintended behavior:

(defun transfer (from:string to:string amount:integer)
 @doc "Transfer money between accounts"
 @model
 [(property (row-enforced accounts 'ks from))
 (property conserves-mass)]

 (with-read accounts from { 'balance := from-bal, 'ks := from-ks }
 (with-read accounts to { 'balance := to-bal }
 (enforce-keyset from-ks)
 (enforce (>= from-bal amount) "Insufficient Funds")
 (enforce (> amount 0) "Non-positive amount")
 (enforce (!= from to) "Sender is the recipient")
 (update accounts from { "balance": (- from-bal amount) })
 (update accounts to { "balance": (+ to-bal amount) }))))

And now we see that finally the property checker verifies that all of
the following are true:

	the sender must be authorized to transfer money,

	it’s not possible for a balance to drop below zero, and

	it’s not possible for money to be created or destroyed.

 Property and Invariant Functions

Property and Invariant Functions

These are functions available in properties and invariants – not
necessarily in executable Pact code. All of these functions are
available in properties, but only a subset are available in invariants.
As a general rule, invariants have vocabulary for talking about the
shape of data, whereas properties also add vocabulary for talking about
function inputs and outputs, and database interactions. Each function
also explicitly says whether it’s available in just properties, or
invariants as well.

Numerical operators

+

(+ x y)

	takes x: a

	takes y: a

	produces a

	where a is of type integer or decimal

Addition of integers and decimals.

Supported in either invariants or properties.

-

(- x y)

	takes x: a

	takes y: a

	produces a

	where a is of type integer or decimal

Subtraction of integers and decimals.

Supported in either invariants or properties.

*

(* x y)

	takes x: a

	takes y: a

	produces a

	where a is of type integer or decimal

Multiplication of integers and decimals.

Supported in either invariants or properties.

/

(/ x y)

	takes x: a

	takes y: a

	produces a

	where a is of type integer or decimal

Division of integers and decimals.

Supported in either invariants or properties.

^

(^ x y)

	takes x: a

	takes y: a

	produces a

	where a is of type integer or decimal

Exponentiation of integers and decimals.

Supported in either invariants or properties.

log

(log b x)

	takes b: a

	takes x: a

	produces a

	where a is of type integer or decimal

Logarithm of x base b.

Supported in either invariants or properties.

-

(- x)

	takes x: a

	produces a

	where a is of type integer or decimal

Negation of integers and decimals.

Supported in either invariants or properties.

sqrt

(sqrt x)

	takes x: a

	produces a

	where a is of type integer or decimal

Square root of integers and decimals.

Supported in either invariants or properties.

ln

(ln x)

	takes x: a

	produces a

	where a is of type integer or decimal

Logarithm of integers and decimals base e.

Supported in either invariants or properties.

exp

(exp x)

	takes x: a

	produces a

	where a is of type integer or decimal

Exponential of integers and decimals. e raised to the integer or decimal
x.

Supported in either invariants or properties.

abs

(abs x)

	takes x: a

	produces a

	where a is of type integer or decimal

Absolute value of integers and decimals.

Supported in either invariants or properties.

round

(round x)

	takes x: decimal

	produces integer

(round x prec)

	takes x: decimal

	takes prec: integer

	produces integer

Banker’s rounding value of decimal x as integer, or to prec
precision as decimal.

Supported in either invariants or properties.

ceiling

(ceiling x)

	takes x: decimal

	produces integer

(ceiling x prec)

	takes x: decimal

	takes prec: integer

	produces integer

Rounds the decimal x up to the next integer, or to prec
precision as decimal.

Supported in either invariants or properties.

floor

(floor x)

	takes x: decimal

	produces integer

(floor x prec)

	takes x: decimal

	takes prec: integer

	produces integer

Rounds the decimal x down to the previous integer, or to prec
precision as decimal.

Supported in either invariants or properties.

mod

(mod x y)

	takes x: integer

	takes y: integer

	produces integer

Integer modulus

Supported in either invariants or properties.

Bitwise operators

&

(& x y)

	takes x: integer

	takes y: integer

	produces integer

Bitwise and

Supported in either invariants or properties.

|

(| x y)

	takes x: integer

	takes y: integer

	produces integer

Bitwise or

Supported in either invariants or properties.

xor

(xor x y)

	takes x: integer

	takes y: integer

	produces integer

Bitwise exclusive-or

Supported in either invariants or properties.

shift

(shift x y)

	takes x: integer

	takes y: integer

	produces integer

Shift x y bits left if y is positive, or right by -y
bits otherwise.

Supported in either invariants or properties.

~

(~ x)

	takes x: integer

	produces integer

Reverse all bits in x

Supported in either invariants or properties.

Logical operators

>

(> x y)

	takes x: a

	takes y: a

	produces bool

	where a is of type integer or decimal

True if x > y

Supported in either invariants or properties.

<

(< x y)

	takes x: a

	takes y: a

	produces bool

	where a is of type integer or decimal

True if x < y

Supported in either invariants or properties.

>=

(>= x y)

	takes x: a

	takes y: a

	produces bool

	where a is of type integer or decimal

True if x >= y

Supported in either invariants or properties.

<=

(<= x y)

	takes x: a

	takes y: a

	produces bool

	where a is of type integer or decimal

True if x <= y

Supported in either invariants or properties.

=

(= x y)

	takes x: a

	takes y: a

	produces bool

	where a is of type integer, decimal, string, time,
bool, object, or keyset

True if x = y

Supported in either invariants or properties.

!=

(!= x y)

	takes x: a

	takes y: a

	produces bool

	where a is of type integer, decimal, string, time,
bool, object, or keyset

True if x != y

Supported in either invariants or properties.

and

(and x y)

	takes x: bool

	takes y: bool

	produces bool

Short-circuiting logical conjunction

Supported in either invariants or properties.

or

(or x y)

	takes x: bool

	takes y: bool

	produces bool

Short-circuiting logical disjunction

Supported in either invariants or properties.

not

(not x)

	takes x: bool

	produces bool

Logical negation

Supported in either invariants or properties.

when

(when x y)

	takes x: bool

	takes y: bool

	produces bool

Logical implication. Equivalent to (or (not x) y).

Supported in either invariants or properties.

and?

(and? f g a)

	takes f: a -> bool

	takes g: a -> bool

	takes a: a

	produces bool

and the results of applying both f and g to a

Supported in either invariants or properties.

or?

(or? f g a)

	takes f: a -> bool

	takes g: a -> bool

	takes a: a

	produces bool

or the results of applying both f and g to a

Supported in either invariants or properties.

Object operators

at

(at k o)

	takes k: string

	takes o: object

	produces a

(at i l)

	takes i: integer

	takes o: list

	produces bool

projection

Supported in either invariants or properties.

+

(+ x y)

	takes x: object

	takes y: object

	produces object

Object merge

Supported in either invariants or properties.

drop

(drop keys o)

	takes keys: [string]

	takes o: object

	produces object

drop entries having the specified keys from an object

Supported in either invariants or properties.

take

(take keys o)

	takes keys: [string]

	takes o: object

	produces object

take entries having the specified keys from an object

Supported in either invariants or properties.

length

(length o)

	takes o: object

	produces integer

the number of key-value pairs in the object

Supported in either invariants or properties.

List operators

at

(at k l)

	takes k: string

	takes l: [a]

	produces a

(at i l)

	takes i: integer

	takes o: list

	produces bool

projection

Supported in either invariants or properties.

length

(length s)

	takes s: [a]

	produces integer

List length

Supported in either invariants or properties.

contains

(contains x xs)

	takes x: a

	takes xs: [a]

	produces bool

(contains k o)

	takes k: string

	takes o: object

	produces bool

(contains value string)

	takes value: string

	takes string: string

	produces bool

List / string / object contains

Supported in either invariants or properties.

reverse

(reverse xs)

	takes xs: [a]

	produces [a]

reverse a list of values

Supported in either invariants or properties.

sort

(sort xs)

	takes xs: [a]

	produces [a]

sort a list of values

Supported in either invariants or properties.

drop

(drop n xs)

	takes n: integer

	takes xs: [a]

	produces [a]

drop the first n values from the beginning of a list (or the end if
n is negative)

Supported in either invariants or properties.

take

(take n xs)

	takes n: integer

	takes xs: [a]

	produces [a]

take the first n values from xs (taken from the end if n is
negative)

Supported in either invariants or properties.

make-list

(make-list n a)

	takes n: integer

	takes a: a

	produces [a]

create a new list with n copies of a

Supported in either invariants or properties.

map

(map f as)

	takes f: a -> b

	takes as: [a]

	produces [b]

apply f to each element in a list

Supported in either invariants or properties.

filter

(filter f as)

	takes f: a -> bool

	takes as: [a]

	produces [a]

filter a list by keeping the values for which f returns true

Supported in either invariants or properties.

fold

(fold f a bs)

	takes f: a -> b -> a

	takes a: a

	takes bs: [b]

	produces [a]

reduce a list by applying f to each element and the previous result

Supported in either invariants or properties.

String operators

length

(length s)

	takes s: string

	produces integer

String length

Supported in either invariants or properties.

+

(+ s t)

	takes s: string

	takes t: string

	produces string

(+ s t)

	takes s: [a]

	takes t: [a]

	produces [a]

String / list concatenation

Supported in either invariants or properties.

str-to-int

(str-to-int s)

	takes s: string

	produces integer

(str-to-int b s)

	takes b: integer

	takes s: string

	produces integer

String to integer conversion

Supported in either invariants or properties.

take

(take n s)

	takes n: integer

	takes s: string

	produces string

take the first n values from xs (taken from the end if n is
negative)

Supported in either invariants or properties.

drop

(drop n s)

	takes n: integer

	takes s: string

	produces string

drop the first n values from xs (dropped from the end if n
is negative)

Supported in either invariants or properties.

Temporal operators

add-time

(add-time t s)

	takes t: time

	takes s: a

	produces time

	where a is of type integer or decimal

Add seconds to a time

Supported in either invariants or properties.

Quantification operators

forall

(forall (x:string) y)

	binds x: a

	takes y: r

	produces r

	where a is any type

	where r is any type

Bind a universally-quantified variable

Supported in properties only.

exists

(exists (x:string) y)

	binds x: a

	takes y: r

	produces r

	where a is any type

	where r is any type

Bind an existentially-quantified variable

Supported in properties only.

column-of

(column-of t)

	takes t: table

	produces type

The type of columns for a given table. Commonly used in
conjunction with quantification; e.g.:
(exists (col:(column-of accounts)) (column-written accounts col)).

Supported in properties only.

Transactional operators

abort

abort

	of type bool

Whether the transaction aborts. This function is only useful when
expressing propositions that do not assume transaction success.
Propositions defined via property implicitly assume transaction
success. We will be adding a new mode in which to use this feature in
the future – please let us know if you need this functionality.

Supported in properties only.

success

success

	of type bool

Whether the transaction succeeds. This function is only useful when
expressing propositions that do not assume transaction success.
Propositions defined via property implicitly assume transaction
success. We will be adding a new mode in which to use this feature in
the future – please let us know if you need this functionality.

Supported in properties only.

governance-passes

governance-passes

	of type bool

Whether the governance predicate passes. For keyset-based governance,
this is the same as something like
(authorized-by 'governance-ks-name). Pact’s property checking system
currently does not analyze the body of a capability when it is used for
governance due to challenges around capabilities making DB modifications
– the system currently assumes that a capability-based governance
predicate is equally capable of succeeding or failing. This feature
allows describing the scenarios where the predicate passes or fails.

Supported in properties only.

result

result

	of type r

	where r is any type

The return value of the function under test

Supported in properties only.

Database operators

table-written

(table-written t)

	takes t: a

	produces bool

	where a is of type table or string

Whether a table is written in the function under analysis

Supported in properties only.

table-read

(table-read t)

	takes t: a

	produces bool

	where a is of type table or string

Whether a table is read in the function under analysis

Supported in properties only.

cell-delta

(cell-delta t c r)

	takes t: a

	takes c: b

	takes r: string

	produces c

	where a is of type table or string

	where b is of type column or string

	where c is of type integer or decimal

The difference in a cell’s value before and after the transaction

Supported in properties only.

column-delta

(column-delta t c)

	takes t: a

	takes c: b

	produces c

	where a is of type table or string

	where b is of type column or string

	where c is of type integer or decimal

The difference in a column’s total summed value before and after the
transaction

Supported in properties only.

column-written

(column-written t c)

	takes t: a

	takes c: b

	produces bool

	where a is of type table or string

	where b is of type column or string

Whether a column is written to in a transaction

Supported in properties only.

column-read

(column-read t c)

	takes t: a

	takes c: b

	produces bool

	where a is of type table or string

	where b is of type column or string

Whether a column is read from in a transaction

Supported in properties only.

row-read

(row-read t r)

	takes t: a

	takes r: string

	produces bool

	where a is of type table or string

Whether a row is read in the function under analysis

Supported in properties only.

row-written

(row-written t r)

	takes t: a

	takes r: string

	produces bool

	where a is of type table or string

Whether a row is written in the function under analysis

Supported in properties only.

row-read-count

(row-read-count t r)

	takes t: a

	takes r: string

	produces integer

	where a is of type table or string

The number of times a row is read during a transaction

Supported in properties only.

row-write-count

(row-write-count t r)

	takes t: a

	takes r: string

	produces integer

	where a is of type table or string

The number of times a row is written during a transaction

Supported in properties only.

row-exists

(row-exists t r time)

	takes t: a

	takes r: string

	takes time: one of {“before”,“after”}

	produces bool

	where a is of type table or string

Whether a row exists before or after a transaction

Supported in properties only.

read

(read t r)

	takes t: a

	takes r: string

	takes time: one of {“before”,“after”}

	produces object

	where a is of type table or string

The value of a read before or after a transaction

Supported in properties only.

Authorization operators

authorized-by

(authorized-by k)

	takes k: string

	produces bool

Whether the named keyset/guard is satisfied by the executing transaction

Supported in properties only.

row-enforced

(row-enforced t c r)

	takes t: a

	takes c: b

	takes r: string

	produces bool

	where a is of type table or string

	where b is of type column or string

Whether the keyset in the row is enforced by the function under analysis

Supported in properties only.

Function operators

identity

(identity a)

	takes a: a

	produces a

	where a is of type table or string

identity returns its argument unchanged

Supported in either invariants or properties.

constantly

(constantly a)

	takes a: a

	takes b: b

	produces a

constantly returns its first argument, ignoring the second

Supported in either invariants or properties.

compose

(compose f g)

	takes f: a -> b

	takes g: b -> c

	produces c

compose two functions

Supported in either invariants or properties.

Other operators

where

(where field f obj)

	takes field: string

	takes f: a -> bool

	takes obj: object

	produces bool

utility for use in filter and select applying f to field
in obj

Supported in either invariants or properties.

typeof

(typeof a)

	takes a: a

	produces string

return the type of a as a string

Supported in either invariants or properties.

 Index

Index

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/kadena-logo-100px.png

_static/kadena-logo-210px.png
K Kadena

_static/file.png

_static/kadena-logo-trans.gif

_static/minus.png

_static/ajax-loader.gif

_images/kadena-logo-210px.png
K Kadena

_static/comment-bright.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Pact Language Reference

 		
 Pact Smart Contract Language Reference

 		
 Rest API

 		
 Pact built-in server

 		
 pact-lang-api JS Library

 		
 API request formatter

 		
 Request YAML file format

 		
 YAML exec command request

 		
 YAML Continuation command request

 		
 Signing Transactions

 		
 Offline Signing with a Cold Wallet

 		
 Detached Signature Transaction Format

 		
 Concepts

 		
 Execution Modes

 		
 Contract Definition

 		
 Transaction Execution

 		
 Queries and Local Execution

 		
 Database Interaction

 		
 Atomic execution

 		
 Key-Row Model

 		
 Queries and Performance

 		
 No Nulls

 		
 Versioned History

 		
 Back-ends

 		
 Types and Schemas

 		
 Runtime Type enforcement

 		
 Static Type Inference on Modules

 		
 Formal Verification

 		
 Keysets and Authorization

 		
 Keyset definition

 		
 Keyset Predicates

 		
 Key rotation

 		
 Module Table Guards

 		
 Row-level keysets

 		
 Namespaces

 		
 Example: Defining a namespace

 		
 Example: Accessing members of a namespace

 		
 Example: Importing module code or implementing interfaces at a namespace

 		
 Example: appending code to a namespace

 		
 Guards, Capabilities and Events

 		
 Guards

 		
 Capabilities

 		
 Signature capabilities

 		
 Signatures and Managed Capabilities

 		
 Guards vs Capabilities

 		
 Modeling capabilities with compose-capability

 		
 Improving efficiency

 		
 defcap details

 		
 Testing scoping signatures with capabilities

 		
 Guard types

 		
 Events

 		
 Generalized Module Governance

 		
 Keysets vs governance functions

 		
 Governance capability and module admin

 		
 Example: stakeholder upgrade vote

 		
 Interfaces

 		
 Example: Declaring and implementing an interface

 		
 Declaring models in an interface

 		
 Module References

 		
 Computational Model

 		
 Turing-Incomplete

 		
 Single-assignment Variables

 		
 Data Types

 		
 Performance

 		
 Control Flow

 		
 Functional Concepts

 		
 Pure execution

 		
 LISP

 		
 Message Data

 		
 Confidentiality

 		
 Entities

 		
 Disjoint Databases

 		
 Confidential Pacts

 		
 Asynchronous Transaction Automation with “Pacts”

 		
 Public Pacts

 		
 Private Pacts

 		
 Failures, Rollbacks and Cancels

 		
 Yield and Resume

 		
 Pact execution scope and pact-id

 		
 Testing pacts

 		
 Dependency Management

 		
 Module Hashes

 		
 Pinning module versions with use

 		
 Inlined Dependencies: “No Leftpad”

 		
 Blessing hashes

 		
 Phased upgrades with “v2” modules

 		
 Syntax

 		
 Literals

 		
 Strings

 		
 Symbols

 		
 Integers

 		
 Decimals

 		
 Booleans

 		
 Lists

 		
 Objects

 		
 Bindings

 		
 Lambdas

 		
 Type specifiers

 		
 Type literals

 		
 Schema type literals

 		
 Module type literals

 		
 Dereference operator

 		
 What can be typed

 		
 Special forms

 		
 Docs and Metadata

 		
 bless

 		
 defun

 		
 defcap

 		
 defconst

 		
 defpact

 		
 defschema

 		
 deftable

 		
 let

 		
 let*

 		
 cond;

 		
 step

 		
 step-with-rollback

 		
 use

 		
 interface

 		
 module

 		
 implements

 		
 Expressions

 		
 Atoms

 		
 S-expressions

 		
 References

 		
 Time formats

 		
 Default format and JSON serialization

 		
 Examples

 		
 ISO8601

 		
 RFC822

 		
 YYYY-MM-DD hh:mm:ss.000000

 		
 Built-in Functions

 		
 General

 		
 CHARSET_ASCII

 		
 CHARSET_LATIN1

 		
 at

 		
 base64-decode

 		
 base64-encode

 		
 bind

 		
 chain-data

 		
 compose

 		
 concat

 		
 constantly

 		
 contains

 		
 continue

 		
 define-namespace

 		
 distinct

 		
 drop

 		
 enforce

 		
 enforce-one

 		
 enforce-pact-version

 		
 enumerate

 		
 filter

 		
 fold

 		
 format

 		
 hash

 		
 identity

 		
 if

 		
 int-to-str

 		
 is-charset

 		
 length

 		
 list

 		
 list-modules

 		
 make-list

 		
 map

 		
 namespace

 		
 pact-id

 		
 pact-version

 		
 public-chain-data

 		
 read-decimal

 		
 read-integer

 		
 read-msg

 		
 read-string

 		
 remove

 		
 resume

 		
 reverse

 		
 sort

 		
 str-to-int

 		
 str-to-list

 		
 take

 		
 try

 		
 tx-hash

 		
 typeof

 		
 where

 		
 yield

 		
 zip

 		
 Database

 		
 create-table

 		
 describe-keyset

 		
 describe-module

 		
 describe-table

 		
 fold-db

 		
 insert

 		
 keylog

 		
 keys

 		
 read

 		
 select

 		
 txids

 		
 txlog

 		
 update

 		
 with-default-read

 		
 with-read

 		
 write

 		
 Time

 		
 add-time

 		
 days

 		
 diff-time

 		
 format-time

 		
 hours

 		
 minutes

 		
 parse-time

 		
 time

 		
 Operators

 		
 !=

 		
 & {#&}

 		
 *

 		
 +

 		
 -

 		
 /

 		
 <

 		
 <=

 		
 =

 		
 >

 		
 >=

 		
 ^

 		
 abs

 		
 and

 		
 and? {#and?}

 		
 ceiling

 		
 exp

 		
 floor

 		
 ln

 		
 log

 		
 mod

 		
 not

 		
 not? {#not?}

 		
 or

 		
 or? {#or?}

 		
 round

 		
 shift

 		
 sqrt

 		
 xor

 		
 | {#|}

 		
 ~ {#~}

 		
 Keysets

 		
 define-keyset

 		
 enforce-keyset

 		
 keys-2

 		
 keys-all

 		
 keys-any

 		
 read-keyset

 		
 Capabilities

 		
 compose-capability

 		
 create-module-guard

 		
 create-pact-guard

 		
 create-principal

 		
 create-user-guard

 		
 emit-event

 		
 enforce-guard

 		
 install-capability

 		
 keyset-ref-guard

 		
 require-capability

 		
 validate-principal

 		
 with-capability

 		
 SPV

 		
 verify-spv

 		
 Commitments

 		
 decrypt-cc20p1305

 		
 validate-keypair

 		
 REPL-only functions

 		
 begin-tx

 		
 bench

 		
 commit-tx

 		
 continue-pact

 		
 env-chain-data

 		
 env-data

 		
 env-dynref

 		
 env-enable-repl-natives

 		
 env-entity

 		
 env-events

 		
 env-exec-config

 		
 env-gas

 		
 env-gaslimit

 		
 env-gaslog

 		
 env-gasmodel

 		
 env-gasprice

 		
 env-gasrate

 		
 env-hash

 		
 env-keys

 		
 env-namespace-policy

 		
 env-sigs

 		
 expect

 		
 expect-failure

 		
 expect-that

 		
 format-address

 		
 load

 		
 mock-spv

 		
 pact-state

 		
 print

 		
 rollback-tx

 		
 sig-keyset

 		
 test-capability

 		
 typecheck

 		
 verify

 		
 with-applied-env

 		
 The Pact Property Checking System

 		
 What is it?

 		
 What do properties and schema invariants look like?

 		
 How does it work?

 		
 How do you use it?

 		
 Expressing properties

 		
 Arguments, return values, and standard arithmetic and comparison operators

 		
 Boolean operators

 		
 Transaction abort and success

 		
 More comprehensive properties API documentation

 		
 Expressing schema invariants

 		
 Keyset Authorization

 		
 Database access

 		
